scholarly journals Fitting a stochastic fire spread model to data

Author(s):  
X. Joey Wang ◽  
John R. J. Thompson ◽  
W. John Braun ◽  
Douglas G. Woolford

Abstract. As the climate changes, it is important to understand the effects on the environment. Changes in wildland fire risk are an important example. A stochastic lattice-based wildland fire spread model was proposed by Boychuk et al. (2007), followed by a more realistic variant (Braun and Woolford, 2013). Fitting such a model to data from remotely sensed images could be used to provide accurate fire spread risk maps, but an intermediate step on the path to that goal is to verify the model on data collected under experimentally controlled conditions. This paper presents the analysis of data from small-scale experimental fires that were digitally video-recorded. Data extraction and processing methods and issues are discussed, along with an estimation methodology that uses differential equations for the moments of certain statistics that can be derived from a sequential set of photographs from a fire. The interaction between model variability and raster resolution is discussed and an argument for partial validation of the model is provided. Visual diagnostics show that the model is doing well at capturing the distribution of key statistics recorded during observed fires.

2011 ◽  
Vol 4 (1) ◽  
pp. 497-545 ◽  
Author(s):  
J. Mandel ◽  
J. D. Beezley ◽  
A. K. Kochanski

Abstract. We describe the physical model, numerical algorithms, and software structure of WRF-Fire. WRF-Fire consists of a fire-spread model, implemented by the level-set method, coupled with the Weather Research and Forecasting model. In every time step, the fire model inputs the surface wind, which drives the fire, and outputs the heat flux from the fire into the atmosphere, which in turn influences the atmosphere. The level-set method allows submesh representation of the burning region and flexible implementation of various kinds of ignition. WRF-Fire is distributed as a part of WRF and it uses the WRF parallel infrastructure for parallel computing.


2002 ◽  
Vol 11 (1) ◽  
pp. 53 ◽  
Author(s):  
Frédéric Morandini ◽  
Paul A. Santoni ◽  
Jacques H. Balbi ◽  
João M. Ventura ◽  
José M. Mendes-Lopes

In a previous work (Santoni et al., Int. J. Wildland Fire, 2000, 9(4), 285–292), we proposed a twodimensional fire spread model including slope effects as another step towards our aim to elaborate a fire management tool. In the present study, we improve the model to include both wind conditions and wind combined with slope conditions. For this purpose the effect of wind and slope are considered similar, in the sense that they both force the flames to lean forward. However, this analogy remains acceptable only when flame tilt is below a threshold value. Simulation results are compared to experimental data under wind and no-slope conditions. The proposed model is able to describe the fire behaviour. Predictions of the model for wind and slope conditions are then considered and comparisons with observations are also provided.


2013 ◽  
Vol 22 (7) ◽  
pp. 959 ◽  
Author(s):  
Patricia L. Andrews ◽  
Miguel G. Cruz ◽  
Richard C. Rothermel

The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is based in part on data collected on the 7 February 1967 Tasmanian grassland fires. A reanalysis of the data indicates that these fires might not have been spreading in fully cured continuous grasslands, as assumed. In addition, more recent grassfire data do not support the wind speed limit. The authors recommend that, in place of the current wind limit, rate of spread be limited to effective midflame wind speed. The Rothermel model is the foundation of many wildland fire modelling systems. Imposition of the wind limit can significantly affect results and potentially influence fire and fuel management decisions.


2012 ◽  
Vol 28 (2) ◽  
pp. 795-810 ◽  
Author(s):  
Geoff Thomas ◽  
David Heron ◽  
Jim Cousins ◽  
Mairéad de Róiste

This paper describes the development of a GIS-based dynamic fire-spread model, with seven distinct modes of fire spread: direct contact, spontaneous ignition of claddings, piloted ignition of claddings, spontaneous ignition through windows, piloted ignition through broken windows, fire spread via non-fire-rated roofs and branding. All except the first two modes include in-built probabilities, but these can be selected individually and given user-defined values. Fire spread modes can be added to the model or altered to suit available building information. Critical details of buildings are obtained from an existing-buildings database, street surveys, or deduced using conditional probabilities from available data. Results show that comparison with actual fires is reasonable. The model could be extended with further development for use as a real time firefighting tool.


2020 ◽  
Vol 29 (3) ◽  
pp. 258 ◽  
Author(s):  
Miguel G. Cruz ◽  
Richard J. Hurley ◽  
Rachel Bessell ◽  
Andrew L. Sullivan

A field-based experimental study was conducted in 50×50m square plots to investigate the behaviour of free-spreading fires in wheat to quantify the effect of crop condition (i.e. harvested, unharvested and harvested and baled) on the propagation rate of fires and their associated flame characteristics, and to evaluate the adequacy of existing operational prediction models used in these fuel types. The dataset of 45 fires ranged from 2.4 to 10.2kmh−1 in their forward rate of fire spread and 3860 and 28000 kWm−1 in fireline intensity. Rate of fire spread and flame heights differed significantly between crop conditions, with the unharvested condition yielding the fastest spreading fires and tallest flames and the baled condition having the slowest moving fires and lowest flames. Rate of fire spread in the three crop conditions corresponded directly with the outputs from the models of Cheney et al. (1998) for grass fires: unharvested wheat → natural grass; harvested wheat (~0.3m tall stubble) → grazed or cut grass; and baled wheat (<0.1m tall stubble) → eaten-out grass. These models produced mean absolute percent errors between 21% and 25% with reduced bias, a result on par with the most accurate published fire spread model evaluations.


2004 ◽  
Vol 176 (2) ◽  
pp. 135-182 ◽  
Author(s):  
G. C. VAZ ◽  
J. C. S. ANDRÉ ◽  
D. X. VIEGAS

2008 ◽  
Vol 13 (5) ◽  
pp. 736-740 ◽  
Author(s):  
Nan Gao ◽  
Wenguo Weng ◽  
Wei Ma ◽  
Shunjiang Ni ◽  
Quanyi Huang ◽  
...  

2007 ◽  
Vol 16 (4) ◽  
pp. 503 ◽  
Author(s):  
W. Matt Jolly

Fire behaviour models are used to assess the potential characteristics of wildland fires such as rates of spread, fireline intensity and flame length. These calculations help support fire management strategies while keeping fireline personnel safe. Live fuel moisture is an important component of fire behaviour models but the sensitivity of existing models to live fuel moisture has not been thoroughly evaluated. The Rothermel surface fire spread model was used to estimate key surface fire behaviour values over a range of live fuel moistures for all 53 standard fuel models. Fire behaviour characteristics are shown to be highly sensitive to live fuel moisture but the response is fuel model dependent. In many cases, small changes in live fuel moisture elicit drastic changes in predicted fire behaviour. These large changes are a result of a combination of the model-calculated live fuel moisture of extinction, the effective wind speed limit and the dynamic load transfer function of some of the fuel models tested. Surface fire spread model sensitivity to live fuel moisture changes is discussed in the context of predicted fire fighter safety zone area because the area of a predicted safety zone may increase by an order of magnitude for a 10% decrease in live fuel moisture depending on the fuel model chosen.


Sign in / Sign up

Export Citation Format

Share Document