sensory enhancement
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2020 ◽  
Vol 34 (9) ◽  
pp. 771-783
Author(s):  
Franchino Porciuncula ◽  
Paula Wasserman ◽  
Karen S. Marder ◽  
Ashwini K. Rao

Background. Impairments in postural control in Huntington disease (HD) have important consequences for daily functioning. This observational study systematically examined baseline postural control and the effect of sensory attenuation and sensory enhancement on postural control across the spectrum of HD. Methods. Participants (n = 39) included healthy controls and individuals in premanifest (pHD) and manifest stages (mHD) of HD. Using wearable sensors, postural control was assessed according to (1) postural set (sit vs stand), (2) sensory attenuation using clinical test of sensory integration, and (3) sensory enhancement with gaze fixation. Outcomes included sway smoothness, amplitude, and frequency. Results. Based on postural set, pHD reduced postural sway in sitting relative to standing, whereas mHD had pronounced sway in standing and sitting, highlighting a baseline postural deficit. During sensory attenuation, postural control in pHD deteriorated relative to controls when proprioceptive demands were high (eyes closed on foam), whereas mHD had significant deterioration of postural control when proprioception was attenuated (eyes open and closed on foam). Finally, gaze fixation improved sway smoothness, amplitude, and frequency in pHD; however, no benefit was observed in mHD. Conclusions. Systematic examination of postural control revealed a fundamental postural deficit in mHD, which further deteriorates when proprioception is challenged. Meanwhile, postural deficits in pHD are detectable when proprioceptive challenge is high. Sensory enhancing strategies using gaze fixation to benefit posture may be useful when introduced well before motor diagnosis. These findings encourage further examination of wearable sensors as part of routine clinical assessments in HD.


2020 ◽  
Vol 123 (4) ◽  
pp. 1427-1438
Author(s):  
Gregory E. P. Pearcey ◽  
Yao Sun ◽  
E. Paul Zehr

Stimulating cutaneous nerves, causing tactile sensations, reduces the perceived heaviness of an object, suggesting that either descending commands are facilitated or the perception of effort is reduced when tactile sensation is enhanced. Sensory stimulation can also mitigate decrements in motor output and spinal cord excitability that occur with fatigue. The effects of sensory stimulation applied with coincident timing of voluntary force output, however, are yet to be examined. Therefore, the purpose of this study was to examine effects of sensory enhancement to nerves innervating opposed skin areas of the foot (top or bottom) on force production during voluntary plantarflexion or dorsiflexion contractions. Stimulation trains were applied for 2 s at either a uniform 150 Hz or a modulated frequency that increased linearly from 50 to 150 Hz and were delivered at the initiation of the contraction. Participants were instructed to perform a ramp contraction [~10% maximal voluntary contraction (MVC)/s] to ~20% MVC and then to hold ~20% MVC for 2 s while receiving real-time visual feedback. Cutaneous reflexes were evoked 75 ms after initiating the hold (75 ms after sensory enhancement ended). Force output was greater for all sensory-enhanced conditions compared with control during plantarflexion; however, force output was not amplified during dorsiflexion. Cutaneous reflexes evoked after sensory enhancement were unaltered. These results indicate that sensory enhancement can amplify plantarflexion but not dorsiflexion, likely as a result of differences in neuroanatomical projections to the flexor and extensor motor pools. Further work is required to elucidate the mechanisms of enhanced force during cutaneous stimulation. NEW & NOTEWORTHY The efficacy of behaviorally timed sensory stimulation to enhance sensations and amplify force output has not been examined. Here we show cutaneous nerve sensory stimulation can amplify plantarflexion force output. This amplification in force occurs irrespective of whether the cutaneous field that is stimulated resides on the surface that is producing the force or the opposing surface. This information may provide insights for the development of technologies to improve performance and/or rehabilitation training.


2020 ◽  
Vol 189 ◽  
pp. 03005
Author(s):  
Shu Yang ◽  
Yi Wang ◽  
Yi Xiao Xuan

Aiming at the problem of the sensory function decline in the elderly, the research intends to improve the optimal aging of bus stops by sensory enhancement interaction design. Though observing the behavior of the elderly and combining the user’s journey map and the KANO model to explore the elderly’s waiting needs at the bus station, it is concluded that the use of visual amplification, voice prompts, handrail dependence and other aspects of sensory enhancement can well improve the interactive design of bus station suitable for the elderly with weak senses, solve the problem of poor information interaction between the elderly and the bus station, and provide ideas for the aging intelligent bus system in the future.


2019 ◽  
Vol 122 (5) ◽  
pp. 2085-2094 ◽  
Author(s):  
Yao Sun ◽  
E. Paul Zehr

Interlimb neural connections support motor tasks such as locomotion and cross-education strength training. Somatosensory pathways that can be assessed with cutaneous reflex paradigms assist in subserving these connections. Many studies show that stimulation of cutaneous nerves elicits reflexes in muscles widespread across the body and induces neural plasticity after training. Sensory enhancement, such as long-duration trains of transcutaneous stimulation, facilitates performance during rehabilitation training or fatiguing motor tasks. Performance improvements due to sensory stimulation may be caused by altered spinal and corticospinal excitability. However, how enhanced sensory input regulates the excitability of interlimb cutaneous reflex pathways has not been studied. Our purpose was to investigate the effects of sensory enhancement on interlimb cutaneous reflexes in wrist extensor muscles. Stimulation to provide sensory enhancement (2-s trains at 150 Hz to median or superficial radial nerves) or evoke cutaneous reflexes (15-ms trains at 300 Hz to superficial radial nerve) was applied in different arms while participants ( n = 13) performed graded isometric wrist extension. Wrist extensor electromyography and cutaneous reflexes were measured bilaterally. We found amplified inhibitory reflexes in the arm receiving superficial radial and median nerve sensory enhancement with net reflex amplitudes decreased by 709.5% and 695.3% repetitively. This suggests sensory input alters neuronal excitabilities in the interlimb cutaneous pathways. These findings have potential application in facilitating motor function recovery through alterations in spinal cord excitability enhancing sensory input during targeted rehabilitation and sports training. NEW & NOTEWORTHY We show that sensory enhancement increases excitability in interlimb cutaneous pathways and that these effects are not influenced by descending motor drive on the contralateral side. These findings confirm the role of sensory input and cutaneous pathways in regulating interlimb movements. In targeted motor function training or rehabilitation, sensory enhancement may be applied to facilitate outcomes.


2019 ◽  
Vol 11 (3) ◽  
pp. 176
Author(s):  
Kristen Prejean Barta ◽  
Carolyn P Da Silva ◽  
Shih-Chiao Tseng ◽  
Toni Roddey

Parkinson disease (PD) leads to neurological impairments yet the auditory system remains intact. Rhythmic Auditory Stimulation (RAS) and Patterned Sensory Enhancement (PSE) have been shown to impact gait in PD. Music therapists (MT) can individualize auditory protocols but for a physical therapist (PT) to incorporate PSE into treatment, a new tool is needed. The Synchronized Optimization Auditory Rehabilitation (SOAR) tool is a new software created to simulate PSE techniques and allow for customization depending on the individual’s reaction to the cue. The purposes were to evaluate the validity of the SOAR tool with RAS and the interrater reliability between disciplines’ application of the SOAR tool. Day one - MT measured gait parameters during no cue, RAS, and SOAR tool. Day two - PT measured gait parameters while using the SOAR tool. A moderate to high correlation between RAS and the SOAR tool on gait was found. The interrater reliability between the MT and PT was high. These finding suggest the SOAR tool is an additional auditory cue delivery tool that PTs could use in the treatment of individuals with PD when auditory cues are deemed appropriate and a MT is not an available member of the interdisciplinary rehabilitation team.


Sign in / Sign up

Export Citation Format

Share Document