artificial metalloenzyme
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 33)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Yasmine S Zubi ◽  
Bingqing Liu ◽  
Yifan Gu ◽  
Dipankar Sahoo ◽  
Jared C Lewis

Visible light photocatalysis enables a broad range of organic transformations that proceed via single electron or energy transfer. Metal polypyridyl complexes are among the most commonly employed visible light photocatalysts....


2021 ◽  
Author(s):  
Yasmine S. Zubi ◽  
Bingqing Liu ◽  
Yifan Gu ◽  
Dipankar Sahoo ◽  
Jared Lewis

Visible light photocatalysis enables a broad range of organic transformations that proceed via single electron or energy transfer. Metal polypyridyl complexes are among the most commonly employed visible light photocatalysts. The photophysical properties of these complexes have been extensively studied and can be tuned by modifying the substituents on the pyridine ligands. On the other hand, ligand modifications that enable substrate binding to control reaction selectivity remain rare. Given the exquisite control that enzymes exert over electron and energy transfer processes in nature, we envisioned that artificial metalloenzymes (ArMs) created by incorporating Ru(II) polypyridyl complexes into a suitable protein scaffold could provide a means to control photocatalyst properties. This study describes approaches to create covalent and non-covalent ArMs from a variety of Ru(II) polypyridyl cofactors and a prolyl oligopeptidase scaffold. A panel of ArMs with enhanced photophysical properties were engineered, and the nature of the scaffold/cofactor interactions in these systems was investigated. These ArMs provided higher yields and rates than Ru(Bpy)32+ for the reductive cyclization of dienones and the [2+2] photocycloaddition between C-cinnamoyl imidazole and 4-methoxystyrene, suggesting that protein scaffolds could provide a means to improve the efficiency of visible light photocatalysts.


2021 ◽  
Author(s):  
Jing Huang ◽  
Zhennan Liu ◽  
Brandon J. Bloomer ◽  
Douglas S. Clark ◽  
Aindrila Mukhopadhyay ◽  
...  

2021 ◽  
Author(s):  
Jaicy Vallapurackal ◽  
Ariane Stucki ◽  
Alexandria Deliz Liang ◽  
Juliane Klehr ◽  
Petra S Dittrich ◽  
...  

The potential of high-throughput compartmentalization renders droplet microfluidics an attractive tool for directed evolution of enzymes as it permits maintenance of the phenotype-genotype linkage throughout the entire optimization procedure. In particular, water-in-oil-in-water double emulsions droplets (DEs) produced by microfluidics enable the analysis of reaction compartments at ultra-high-throughput using commercially available fluorescence-activated cell sorting (FACS) devices. Here we report a streamlined method applicable for the ultrahigh-throughput screening of an artificial metalloenzyme (ArM), an artificial deallylase (ADAse), in double emulsions. The DE-protocol was validated by screening a four hundred member, double-mutant streptavidin library for the CpRu-catalyzed uncaging of aminocoumarin. The most active variants, identified by next-generation sequencing of the sorted DE droplets with highest fluorescent intensity, are in good agreement with 96-well plate screening hits. These findings, thus, pave the way towards the systematic implementation of commercially available FACS for the directed evolution of metalloenzymes making ultrahigh-throughput screening more broadly accessible. The use of microfluidics for the formation of uniform compartments with precise control over reagents and cell encapsulation further facilitates the establishment of highly reliable quantitative assays.


Author(s):  
Kassandra J. Naughton ◽  
Regina E. Treviño ◽  
Peter J. Moore ◽  
Ashlee E. Wertz ◽  
J. Alex Dickson ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamideh Aghahosseini ◽  
Mohammad Reza Saadati ◽  
Seyed Jamal Tabatabaei Rezaei ◽  
Ali Ramazani ◽  
Narges Asadi ◽  
...  

AbstractHerein, a robust Pd(II)-based polyfunctional magnetic amphiphilic artificial metalloenzyme was prepared by anchoring a Pd(2,2′-dipyridylamine)Cl2 bearing hydrophilic monomethyl ether poly(ethylene glycol) (mPEG) chains on the surface of amino-functionalized silica-coated magnetic nanoparticles. The 2,2′-dipyridylamine (dpa) has shown excellent complexation properties for Pd(II) and it could be easily anchored onto functionalized magnetic support by the bridging nitrogen atom. Moreover, the bridging nitrogen atom at the proximity of Pd(II) catalytic center could play an important role in dynamic suppramolecular interactions with substrates. The leaching, air and moisture resistant [Pd(dpa)Cl2] complex endow the dynamic and robust structure to the designed artificial enzyme. Moreover, the water dispersibility of designed artificial metalloenzyme raised from mPEG chains and the magnetic nanoparticles core which could function as protein mimics endow it other necessary characters of artificial enzymes. The prepared artificial metalloenzyme displayed remarkable activity in Suzuki–Miyaura cross-coupling reaction employing low-palladium loading under mild conditions, with the exceptionally high turnover frequency, clean reaction profile, easy work-up procedure, good to excellent products yields and short reaction times. The designed air- and moisture-stable artificial metalloenzyme could recycle more than fifteen times with easy separation procedure in aqueous solution under aerobic conditions without any noticeable loss in activity.


ACS Catalysis ◽  
2021 ◽  
pp. 6343-6347
Author(s):  
Sandro Fischer ◽  
Thomas R. Ward ◽  
Alexandria D. Liang

Sign in / Sign up

Export Citation Format

Share Document