scholarly journals EAO‐468/PO‐BR‐013 | Exclusion from oral environment enables bony integration of subcrestal implant‐abutment connection

2021 ◽  
Vol 32 (S22) ◽  
pp. 77-77
2014 ◽  
Vol 40 (6) ◽  
pp. 633-639 ◽  
Author(s):  
Erica Dorigatti de Avila ◽  
Fernanda de Matos Moraes ◽  
Sabrina Maria Castanharo ◽  
Marcelo Antonialli Del'Acqua ◽  
Francisco de Assis Mollo

Because there is no consensus in the literature about the need for a splint between copings, the aim of this study was to evaluate, in vitro, the accuracy of 2 impression techniques for implant-supported prostheses. A master cast was fabricated with four parallel implant abutment analogs and a passive framework. Two groups with 5 casts each were formed: Group 1 (squared impression copings with no splint: S) and Group 2 (splinted squared impression copings, using metal drill burs and Pattern resin: SS). The impression material used was polyvinyl siloxane with open trays for standard preparation of the casts. For each cast, the framework was positioned, and a titanium screw was tightened with 10 N·cm torque in analog A, after which measurements of the abutment-framework interface gaps were performed at analogs C and D. This process was repeated for analog D. These measurements were analyzed using software. A one-way analysis of variance (ANOVA) with a confidence interval of 95% was used to analyze the data. Significant differences were detected between S and SS in relation to the master cast (P ≤ 0.05). The median values of the abutment-framework interface gaps were as follows: master cast: 39.64 μm; squared impression copings with no splint: 205.86 μm; splinted squared impression copings: 99.19 μm. Under the limitations of this study, the technique presented for Group 2 produces better results compared with the technique used for Group 1.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 408 ◽  
Author(s):  
Ludan Qin ◽  
Shuo Yao ◽  
Jiaxin Zhao ◽  
Chuanjian Zhou ◽  
Thomas W. Oates ◽  
...  

Polyetheretherketone (PEEK) is an important high-performance thermoplastic. Its excellent strength, stiffness, toughness, fatigue resistance, biocompatibility, chemical stability and radiolucency have made PEEK attractive in dental and orthopedic applications. However, PEEK has an inherently hydrophobic and chemically inert surface, which has restricted its widespread use in clinical applications, especially in bonding with dental resin composites. Cutting edge research on novel methods to improve PEEK applications in dentistry, including oral implant, prosthodontics and orthodontics, is reviewed in this article. In addition, this article also discusses innovative surface modifications of PEEK, which are a focus area of active investigations. Furthermore, this article also discusses the necessary future studies and clinical trials for the use of PEEK in the human oral environment to investigate its feasibility and long-term performance.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1126
Author(s):  
Giovanna Iezzi ◽  
Francesca Di Lillo ◽  
Michele Furlani ◽  
Marco Degidi ◽  
Adriano Piattelli ◽  
...  

Symmetric and well-organized connective tissues around the longitudinal implant axis were hypothesized to decrease early bone resorption by reducing inflammatory cell infiltration. Previous studies that referred to the connective tissue around implant and abutments were based on two-dimensional investigations; however, only advanced three-dimensional characterizations could evidence the organization of connective tissue microarchitecture in the attempt of finding new strategies to reduce inflammatory cell infiltration. We retrieved three implants with a cone morse implant–abutment connection from patients; they were investigated by high-resolution X-ray phase-contrast microtomography, cross-linking the obtained information with histologic results. We observed transverse and longitudinal orientated collagen bundles intertwining with each other. In the longitudinal planes, it was observed that the closer the fiber bundles were to the implant, the more symmetric and regular their course was. The transverse bundles of collagen fibers were observed as semicircular, intersecting in the lamina propria of the mucosa and ending in the oral epithelium. No collagen fibers were found radial to the implant surface. This intertwining three-dimensional pattern seems to favor the stabilization of the soft tissues around the implants, preventing inflammatory cell apical migration and, consequently, preventing bone resorption and implant failure. This fact, according to the authors’ best knowledge, has never been reported in the literature and might be due to the physical forces acting on fibroblasts and on the collagen produced by the fibroblasts themselves, in areas close to the implant and to the symmetric geometry of the implant itself.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 385
Author(s):  
Igor Smojver ◽  
Marko Vuletić ◽  
Dražena Gerbl ◽  
Ana Budimir ◽  
Mato Sušić ◽  
...  

The microenvironment of the oral cavity is altered when an implant, a biocompatible foreign body, is inserted into the mouth. Bacteria settle in the tissues in and around the implant due to the passage of microorganisms through the microgap at the connection of the implant and prosthetic abutment. To prevent colonization of the implant by microorganisms, one idea is to use sealing and antimicrobial materials to decontaminate the implant–abutment interface and close the microgap. The purpose of this study is to evaluate the antimicrobial efficacy and permeability of different types of sealing materials at the implant–abutment interface, under static conditions. Three different sealing material (GapSeal gel, Oxysafe gel and Flow.sil) were used for sealing the implant–abutment interfaces in 60 titanium dental implants, which were first contaminated with a solution containing Staphylococcus aureus and Candida albicans for 14 days under an aerobic condition. Results showed that a complete seal against bacterial infection was not formed at the implant–abutment interface, while for fungal infections, only GapSeal material helped to prevent microleakage. Findings of this in vitro study reported that application of sealing material before abutment connection may reduce peri-implant bacterial and fungal population compared with the interface without sealing material.


2021 ◽  
Vol 22 (3) ◽  
pp. 1067
Author(s):  
Georgios Romanos ◽  
Gerard Fischer ◽  
Rafael Delgado-Ruiz

The objective of this review was to analyze the process of wear of implants leading to the shedding of titanium particles into the peri-implant hard and soft tissues. Titanium is considered highly biocompatible with low corrosion and toxicity, but recent studies indicate that this understanding may be misleading as the properties of the material change drastically when titanium nanoparticles (NPs) are shed from implant surfaces. These NPs are immunogenic and are associated with a macrophage-mediated inflammatory response by the host. The literature discussed in this review indicates that titanium NPs may be shed from implant surfaces at the time of implant placement, under loading conditions, and during implant maintenance procedures. We also discuss the significance of the micro-gap at the implant-abutment interface and the effect of size of the titanium particles on their toxicology. These findings are significant as the titanium particles can have adverse effects on local soft and hard tissues surrounding implants, implant health and prognosis, and even the health of systemic tissues and organs.


Sign in / Sign up

Export Citation Format

Share Document