scholarly journals A Design Methodology for Energy-Aware Processing in Unmanned Aerial Vehicles

2022 ◽  
Vol 27 (1) ◽  
pp. 1-20
Author(s):  
Jingyu He ◽  
Yao Xiao ◽  
Corina Bogdan ◽  
Shahin Nazarian ◽  
Paul Bogdan

Unmanned Aerial Vehicles (UAVs) have rapidly become popular for monitoring, delivery, and actuation in many application domains such as environmental management, disaster mitigation, homeland security, energy, transportation, and manufacturing. However, the UAV perception and navigation intelligence (PNI) designs are still in their infancy and demand fundamental performance and energy optimizations to be eligible for mass adoption. In this article, we present a generalizable three-stage optimization framework for PNI systems that (i) abstracts the high-level programs representing the perception, mining, processing, and decision making of UAVs into complex weighted networks tracking the interdependencies between universal low-level intermediate representations; (ii) exploits a differential geometry approach to schedule and map the discovered PNI tasks onto an underlying manycore architecture. To mine the complexity of optimal parallelization of perception and decision modules in UAVs, this proposed design methodology relies on an Ollivier-Ricci curvature-based load-balancing strategy that detects the parallel communities of the PNI applications for maximum parallel execution, while minimizing the inter-core communication; and (iii) relies on an energy-aware mapping scheme to minimize the energy dissipation when assigning the communities onto tile-based networks-on-chip. We validate this approach based on various drone PNI designs including flight controller, path planning, and visual navigation. The experimental results confirm that the proposed framework achieves 23% flight time reduction and up to 34% energy savings for the flight controller application. In addition, the optimization on a 16-core platform improves the on-time visit rate of the path planning algorithm by 14% while reducing 81% of run time for ConvNet visual navigation.

2020 ◽  
Author(s):  
Tauã Cabreira ◽  
Lisane Brisolara ◽  
Paulo Ferreira Jr.

Coverage Path Planning (CPP) problem is a motion planning subtopic in robotics, where it is necessary to build a path for a robot to explore every location in a given scenario. Unmanned Aerial Vehicles (UAV) have been employed in several applications related to the CPP problem. However, one of the significant limitations of UAVs is endurance, especially in multi-rotors. Minimizing energy consumption is pivotal to prolong and guarantee coverage. Thus, this work proposes energy-aware coverage path planning solutions for regular and irregular-shaped areas containing full and partial information. We consider aspects such as distance, time, turning maneuvers, and optimal speed in the UAV’s energy consumption. We propose an energy-aware spiral algorithm called E-Spiral to perform missions over regular-shaped areas. Next, we explore an energy-aware grid-based solution called EG-CPP for mapping missions over irregular-shaped areas containing no-fly zones. Finally, we present an energy-aware pheromone-based solution for patrolling missions called NC-Drone. The three novel approaches successfully address different coverage path planning scenarios, advancing the state-of-the-art in this area.


2010 ◽  
Author(s):  
Antonios Tsourdos ◽  
Brian White ◽  
Madhavan Shanmugavel

Author(s):  
Zhe Zhang ◽  
Jian Wu ◽  
Jiyang Dai ◽  
Cheng He

For stealth unmanned aerial vehicles (UAVs), path security and search efficiency of penetration paths are the two most important factors in performing missions. This article investigates an optimal penetration path planning method that simultaneously considers the principles of kinematics, the dynamic radar cross-section of stealth UAVs, and the network radar system. By introducing the radar threat estimation function and a 3D bidirectional sector multilayer variable step search strategy into the conventional A-Star algorithm, a modified A-Star algorithm was proposed which aims to satisfy waypoint accuracy and the algorithm searching efficiency. Next, using the proposed penetration path planning method, new waypoints were selected simultaneously which satisfy the attitude angle constraints and rank-K fusion criterion of the radar system. Furthermore, for comparative analysis of different algorithms, the conventional A-Star algorithm, bidirectional multilayer A-Star algorithm, and modified A-Star algorithm were utilized to settle the penetration path problem that UAVs experience under various threat scenarios. Finally, the simulation results indicate that the paths obtained by employing the modified algorithm have optimal path costs and higher safety in a 3D complex network radar environment, which show the effectiveness of the proposed path planning scheme.


Author(s):  
Kai Yit Kok ◽  
Parvathy Rajendran

This paper presents an enhanced particle swarm optimization (PSO) for the path planning of unmanned aerial vehicles (UAVs). An evolutionary algorithm such as PSO is costly because every application requires different parameter settings to maximize the performance of the analyzed parameters. People generally use the trial-and-error method or refer to the recommended setting from general problems. The former is time consuming, while the latter is usually not the optimum setting for various specific applications. Hence, this study focuses on analyzing the impact of input parameters on the PSO performance in UAV path planning using various complex terrain maps with adequate repetitions to solve the tuning issue. Results show that inertial weight parameter is insignificant, and a 1.4 acceleration coefficient is optimum for UAV path planning. In addition, the population size between 40 and 60 seems to be the optimum setting based on the case studies.


Sign in / Sign up

Export Citation Format

Share Document