bayesian hierarchical method
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 3 ◽  
Author(s):  
Dimitrios Kiagias ◽  
Giulia Russo ◽  
Giuseppe Sgroi ◽  
Francesco Pappalardo ◽  
Miguel A. Juárez

We propose a Bayesian hierarchical method for combining in silico and in vivo data onto an augmented clinical trial with binary end points. The joint posterior distribution from the in silico experiment is treated as a prior, weighted by a measure of compatibility of the shared characteristics with the in vivo data. We also formalise the contribution and impact of in silico information in the augmented trial. We illustrate our approach to inference with in silico data from the UISS-TB simulator, a bespoke simulator of virtual patients with tuberculosis infection, and synthetic physical patients from a clinical trial.


2021 ◽  
Vol 51 (3) ◽  
pp. 249-255
Author(s):  
Athanassios C. Tsikliras ◽  
Donna Dimarchopoulou

Large sharks and rays are generally understudied in the Mediterranean Sea, thus leading to a knowledge gap of basic biological characteristics that are important in fisheries management and ecosystem modeling. Out of the 76 sharks and rays inhabiting the Mediterranean Sea, the length–weight relations (LWR) are available for 28 (37%) of them, usually for common small-sized species that are not protected and may be marketed. The aim of the presently reported study was to fill in the knowledge gap through the estimation of LWR of rare and uncommon sharks and rays in the Mediterranean Sea using the information from single records or few individuals. The analysis was based on a Bayesian hierarchical method for estimating length–weight relations in fishes that has been recently proposed for data-deficient species or museum collections and uses the prior knowledge and existing LWR studies to derive species-specific LWR parameters by body form. The use of this method was applied to single records of rare and uncommon species and here we report the LWR of 46 uncommon sharks and ray species, 14 of which are first reported LWR at a global scale and 21 are the first reported LWR for the Mediterranean Sea; the remaining 11 species are first time records for the western or eastern Mediterranean regions. Museum collections and sporadic catch records of rare emblematic species may provide useful biological information with the use of appropriate Bayesian methods.


2021 ◽  
Vol 51 (3) ◽  
pp. 249-255
Author(s):  
Athanassios C. Tsikliras ◽  
Donna Dimarchopoulou

Large sharks and rays are generally understudied in the Mediterranean Sea, thus leading to a knowledge gap of basic biological characteristics that are important in fisheries management and ecosystem modeling. Out of the 76 sharks and rays inhabiting the Mediterranean Sea, the length–weight relations (LWR) are available for 28 (37%) of them, usually for common small-sized species that are not protected and may be marketed. The aim of the presently reported study was to fill in the knowledge gap through the estimation of LWR of rare and uncommon sharks and rays in the Mediterranean Sea using the information from single records or few individuals. The analysis was based on a Bayesian hierarchical method for estimating length–weight relations in fishes that has been recently proposed for data-deficient species or museum collections and uses the prior knowledge and existing LWR studies to derive species-specific LWR parameters by body form. The use of this method was applied to single records of rare and uncommon species and here we report the LWR of 46 uncommon sharks and ray species, 14 of which are first reported LWR at a global scale and 21 are the first reported LWR for the Mediterranean Sea; the remaining 11 species are first time records for the western or eastern Mediterranean regions. Museum collections and sporadic catch records of rare emblematic species may provide useful biological information with the use of appropriate Bayesian methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhuoran Yu ◽  
Yimeng Duan ◽  
Shen Zhang ◽  
Xin Liu ◽  
Kui Li

Dock-less bicycle-sharing programs have been widely accepted as an efficient mode to benefit health and reduce congestions. And modeling and prediction has always been a core proposition in the field of transportation. Most of the existing demand prediction models for shared bikes take regions as research objects; therefore, a POI-based method can be a beneficial complement to existing research, including zone-level, OD-level, and station-level techniques. Point of interest (POI) is the location description of spatial entities, which can reflect the cycling route characteristics for both commuting and noncommuting trips to a certain extent, and is also the main generating point and attraction point of shared-bike travel flow. In this study, we make an effort to model a POI-level cycling demand with a Bayesian hierarchical method. The proposed model combines the integrated nested Laplace approximation (INLA) and random partial differential equation (SPDE) to cope with the huge computation in the modeling process. In particular, we have adopted the dock-less bicycle-sharing rental records of Mobike as a case study to validate our method; the study area was one of the fastest growing urban districts in Shanghai in August 2016. The operation results show that the method can help better understand, measure, and characterize spatiotemporal patterns of bike-share ridership at the POI level and quantify the impact of the spatiotemporal effect on bicycle-sharing use.


2018 ◽  
Author(s):  
Chantriolnt-Andreas Kapourani ◽  
Guido Sanguinetti

AbstractMeasurements of DNA methylation at the single cell level are promising to revolutionise our understanding of epigenetic control of gene expression. Yet, intrinsic limitations of the technology result in very sparse coverage of CpG sites (around 5% to 20% coverage), effectively limiting the analysis repertoire to a semi-quantitative level. Here we introduce Melissa (MEthyLation Inference for Single cell Analysis), a Bayesian hierarchical method to quantify spatially-varying methylation profiles across genomic regions from single-cell bisulfite sequencing data (scBS-seq). Melissa clusters individual cells based on local methylation patterns, enabling the discovery of epigenetic differences and similarities among individual cells. The clustering also acts as an effective regularisation method for imputation of methylation on unassayed CpG sites, enabling transfer of information between individual cells. We show both on simulated and real data sets that Melissa provides accurate and biologically meaningful clusterings, and state-of-the-art imputation performance. An R implementation of Melissa is publicly available at https://github.com/andreaskapou/Melissa.


2007 ◽  
Vol 171 (3) ◽  
pp. 1049-1063 ◽  
Author(s):  
Stephen C. Myers ◽  
Gardar Johannesson ◽  
William Hanley

Sign in / Sign up

Export Citation Format

Share Document