scholarly journals Filling in knowledge gaps: Length–weight relations of 46 uncommon sharks and rays (Elasmobranchii) in the Mediterranean Sea

2021 ◽  
Vol 51 (3) ◽  
pp. 249-255
Author(s):  
Athanassios C. Tsikliras ◽  
Donna Dimarchopoulou

Large sharks and rays are generally understudied in the Mediterranean Sea, thus leading to a knowledge gap of basic biological characteristics that are important in fisheries management and ecosystem modeling. Out of the 76 sharks and rays inhabiting the Mediterranean Sea, the length–weight relations (LWR) are available for 28 (37%) of them, usually for common small-sized species that are not protected and may be marketed. The aim of the presently reported study was to fill in the knowledge gap through the estimation of LWR of rare and uncommon sharks and rays in the Mediterranean Sea using the information from single records or few individuals. The analysis was based on a Bayesian hierarchical method for estimating length–weight relations in fishes that has been recently proposed for data-deficient species or museum collections and uses the prior knowledge and existing LWR studies to derive species-specific LWR parameters by body form. The use of this method was applied to single records of rare and uncommon species and here we report the LWR of 46 uncommon sharks and ray species, 14 of which are first reported LWR at a global scale and 21 are the first reported LWR for the Mediterranean Sea; the remaining 11 species are first time records for the western or eastern Mediterranean regions. Museum collections and sporadic catch records of rare emblematic species may provide useful biological information with the use of appropriate Bayesian methods.

2021 ◽  
Vol 51 (3) ◽  
pp. 249-255
Author(s):  
Athanassios C. Tsikliras ◽  
Donna Dimarchopoulou

Large sharks and rays are generally understudied in the Mediterranean Sea, thus leading to a knowledge gap of basic biological characteristics that are important in fisheries management and ecosystem modeling. Out of the 76 sharks and rays inhabiting the Mediterranean Sea, the length–weight relations (LWR) are available for 28 (37%) of them, usually for common small-sized species that are not protected and may be marketed. The aim of the presently reported study was to fill in the knowledge gap through the estimation of LWR of rare and uncommon sharks and rays in the Mediterranean Sea using the information from single records or few individuals. The analysis was based on a Bayesian hierarchical method for estimating length–weight relations in fishes that has been recently proposed for data-deficient species or museum collections and uses the prior knowledge and existing LWR studies to derive species-specific LWR parameters by body form. The use of this method was applied to single records of rare and uncommon species and here we report the LWR of 46 uncommon sharks and ray species, 14 of which are first reported LWR at a global scale and 21 are the first reported LWR for the Mediterranean Sea; the remaining 11 species are first time records for the western or eastern Mediterranean regions. Museum collections and sporadic catch records of rare emblematic species may provide useful biological information with the use of appropriate Bayesian methods.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2390
Author(s):  
Thodoros E. Kampouris ◽  
Drosos Koutsoubas ◽  
Debora Milenkova ◽  
Georgios Economidis ◽  
Stylianos Tamvakidis ◽  
...  

The European spiny lobster Palinurus elephas is a vulnerable species that inhabits and is harvested in the Mediterranean Sea and the adjacent Atlantic waters. The fisheries associated with the spiny lobster are mainly conducted with tangle nets, trammel nets, pots, and creels. The fishing pressure has greatly reduced their numbers, changing them from a common shallow coastal species to a largely remnant population. The relative research on the species’ biology and fisheries from the eastern Mediterranean Sea is almost absent. The fishery along the Chalkidiki Peninsula, Greece, is multispecies, and fishing is conducted by a small number of artisanal fishermen mainly using trammel nets. The lobster stock—both spiny and clawed lobsters—declined significantly during the late 1980s and early 1990s, later than most cases in the Mediterranean Sea. However, data regarding the nature and status of the fishery associated with the spiny lobster in Greece are lacking. Data regarding the characteristics of the spiny regional fishery were obtained by interviews and questionnaires. Additionally, fishery surveys were conducted during the main lobster fishing season from 1 May 2017 to 31 August 2017. Sixteen species were identified (15 finfish species and one invertebrate species) as targeted. In total, 79 spiny lobsters were sampled in this study; the population’s sex ratio significantly diverts from the theoretical 1:1 (χ2 = 4.57; p < 0.05), and males were dominant. Both male and female individuals demonstrate negative allometric growth profiles. In addition, no significant differences were observed between sexes. In Greece, thus far, the knowledge and information are sporadic, limited, and/or species-specific, most of which regard finfish fisheries. Furthermore, the national legislation is rather complicated—or too generalized—thus creating great uncertainties. The in-depth knowledge and experience of fishermen should be further acknowledged and utilized, and wider collaborations among scientists, practitioners, and policy-makers should be established. The present study poses some thoughts on the effectiveness of the recent EU Landing Obligation and its contribution to the potential restoration of the species.


Author(s):  
Anne Mather

The Mediterranean is the westernmost part of the global-scale Alpine-Himalayan orogenic belt which stretches from Spain to New Zealand. The landscapes of the region have a long and complex history that includes both horizontal and vertical crustal movements and the creation and destruction of oceans. This began with the break up of the super-continent Pangea around 250 Ma, which generated the Tethys Ocean—the forerunner to the present-day Mediterranean Sea. Collision of the African and European tectonic plates over the last 30 Ma led to the destruction of the Tethys Ocean, although a few remnants of its geology are preserved within the eastern Mediterranean. It is the collision of Africa and Eurasia, and the associated tectonics that have been largely responsible for generating the Mediterranean Sea, its subsequent history, and the landscapes that surround it. This collisional history progressively reduced the connectivity of the Mediterranean Sea with surrounding marine bodies by closing and restricting marine gateways. During the Miocene, for example, the Mediterranean basin became completely isolated from surrounding marine bodies in what is known as the ‘Messinian Salinity Crisis’. This period saw major changes to the regional water balance leading to evaporation and draw-down of the Mediterranean Sea. This had profound impacts on all aspects of the physical geography of the region including the climatology, biogeography, and geomorphology and its legacy can be seen across the region today. The more recent Quaternary geodynamics of the Mediterranean have generated an area which includes a complex mixture of zones of plate subduction of various ages and stages (Figure 1.1b). The modern Mediterranean includes zones of active subduction associated with volcanic activity—such as the Calabrian arc—and older zones of now quiescent subduction such as the Betic-Rif arc. There is a wide range of seismic activity associated with these regions from deep (600 km) to shallow (<50 km) and ranging in magnitude up to 8.0Mw (earthquake moment magnitude; a quantitative and physically based scale for measuring earthquakes).


Jurnal Hukum ◽  
2020 ◽  
Vol 36 (2) ◽  
pp. 126
Author(s):  
Edanur Yıldız

Turkey and Greece are again dragged into a new conflict in the East Mediterranean. Turkey and Greece vie for supremacy in the eastern Mediterranean. Turkey, for its part, indicated that Greece's claim to the territory would amount to a siege in the country by giving Greece a disproportionate amount of territory. This study aims to rethink the conflict between Greece and Turkey in the waters of the Mediterranean sea in the view of international maritime law. This study uses an empirical juridical approach. The Result of this research is Turkey does not ignore the Greece rights, Greece ignores the international law with its extended or excessive maritime claims. Greece tries to give full entitlement of the islands in Mediterranean and Agean. Whereas the effect Formula is applied by international courts.


ALGAE ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 175-193
Author(s):  
Moufida Abdennadher ◽  
Amel Bellaaj Zouari ◽  
Walid Medhioub ◽  
Antonella Penna ◽  
Asma Hamza

This study provides the first report of the presence of Coolia malayensis in the Mediterranean Sea, co-occurring with C. monotis. Isolated strains from the Gulf of Gabès, Tunisia (South-eastern Mediterranean) were identified by morphological characterization and phylogenetic analysis. Examination by light and scanning electron microscopy revealed no significant morphological differences between the Tunisian isolates and other geographically distant strains of C. monotis and C. malayensis. Phylogenetic trees based on ITS1-5.8S-ITS2 and D1‒D3/28S rDNA sequences showed that C. monotis strains clustered with others from the Mediterranean and Atlantic whereas the C. malayensis isolate branched with isolates from the Pacific and the Atlantic, therefore revealing no geographical trend among C. monotis and C. malayensis populations. Ultrastructural analyses by transmission electron microscopy revealed the presence of numerous vesicles containing spirally coiled fibers in both C. malayensis and C. monotis cells, which we speculate to be involved in mucus production.


2018 ◽  
Author(s):  
Abir Fersi ◽  
Nawfel Mosbahi ◽  
Ali Bakalem ◽  
Jean-Philippe Pezy ◽  
Alexandrine Baffreau ◽  
...  

The Gulf of Gabès on the southern coasts of Tunisia in the central part of the Mediterranean is a very shallow basin, characterized by semidiurnal tides, attaining a range of 2.3 m during spring tides. The intertidal zone was covered by extended Zostera (Zosterella) noltei Hornemann, 1832 beds mainly developed around the Kneiss Islands while tidal channels ensured the water circulation in this sub-tropical environment with very low freshwater input and high summer temperature. In spite of protected conventions, the area remained under high human pressures: overfishing, and the impact of the pollution of the phosphate industry. Intensive sampling in both intertidal and shallow subtidal zones during annual cycles permitted to identify a rich macrofauna which increase considerably the species known in this eastern part of the Mediterranean Sea. More than 50 species are added for the Tunisian fauna. Moreover, patterns of diversity are analysed with the sediment types, presence or absence of Zostera noltei seagrass bed, and human pressures. The list of the collected species are compared with those of surrounding areas in both Western and Eastern Mediterranean Sea.


2019 ◽  
Author(s):  
Piero Lionello ◽  
Dario Conte ◽  
Marco Reale

Abstract. Large positive and negative sea level anomalies at the coast of the Mediterranean Sea are linked to intensity and position of cyclones moving along the Mediterranean storm track, with dynamics involving different factors. This analysis is based on a model hindcast and considers nine coastal stations, which are representative of sea level anomalies with different magnitude and characteristics. When a shallow water fetch is present, the wind around the cyclone center is the main cause of sea level positive and negative anomalies, depending on its onshore or offshore direction. The inverse barometer effect produces a positive anomaly at the coast near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea, because a cross-basin mean sea level pressure gradient is associated to the presence of a cyclone. Further, at some stations, negative sea level anomalies are reinforced by a residual water mass redistribution within the basin, which is associated with a transient response to the atmospheric pressure forcing. Though the link between presence of a cyclone in the Mediterranean has comparable importance for positive and negative anomalies, the relation between cyclone position and intensity is stronger for the magnitude of positive events. Area of cyclogenesis, track of the central minimum and position at the time of the event differ depending on the location where the sea level anomaly occurs and on its sign. The western Mediterranean is the main cyclogenesis area for both positive and negative anomalies, overall. Atlantic cyclones mainly produce positive sea level anomalies in the western basin. At the easternmost stations, positive anomalies are caused by Cyclogenesis in the Eastern Mediterranean. North Africa cyclogeneses are a major source of positive anomalies at the central African coast and negative anomalies at the eastern Mediterranean and North Aegean coast.


2021 ◽  
Author(s):  
Débora Silva Raposo ◽  
Raphaël Morard ◽  
Christiane Schmidt ◽  
Michal Kucera

&lt;p&gt;In recent decades the &amp;#8220;Lessepsian&amp;#8221; migration caused a rapid change in the marine community composition due to the invasion of alien species from the Red Sea into the Mediterranean Sea. Among these invaders is the large benthic foraminifera &lt;em&gt;Amphistegina lobifera&lt;/em&gt;, a diatom-bearing species that recently reached the invasion front in Sicily. There it copes with colder winters and broader temperature than in its original source, the Red Sea. It is not yet known how (or if) the population from the invasion front has developed adaptation to this new thermal regime. Understanding the modern marine invasive patterns is a crucial tool to predict future invasive successes in marine environments. Therefore, in this study we aim to evaluate the physiological responses to cold temperatures of &lt;em&gt;A. lobifera&lt;/em&gt; populations at three different invasive stages: source (Red Sea), early invader (Eastern Mediterranean) and invasion front (Sicily). For this, we conducted a culturing experiment in which we monitored the responses of the foraminifera (growth, motility) to temperatures of 10, 13, 16, 19&amp;#176;C + control (25&amp;#176;C) over four weeks. To address what is the role of their endosymbionts in the adaptation process, we also monitored their photosynthetic activity (Pulse Amplitude Modulation - PAM fluorometer) during the experiment. The growth rate of the foraminifera was reduced for all populations below 19&amp;#176;C as well as the motility, reduced until 16&amp;#176;C and dropping to zero below 13&amp;#176;C. The response of the endosymbionts was however different. There was a reduced photosynthetic activity of the Red Sea and Eastern Mediterranean populations at colder temperatures observed by the lower maximum quantum yield (Fv:Fm) and effective quantum yield (Y(II)), when compared to their initial levels and to the other treatments. In the meantime, the endosymbionts of the Sicily population stood out with the highest photosynthetic activity (Fv:Fm and Y(II)) in the treatments bellow 13 &amp;#176;C (P &lt; 0.05). In conclusion, we observed that while the host responses were similar between the three populations, the endosymbionts from the invasion front population shows the best performance at colder temperatures. This suggests that the photo-symbiosis has an important role in adaptation, most likely being a key factor to the success of past and future migrations.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document