Toward Controllable Infill Completions Using Frac-Driven Interactions FDI Data

2021 ◽  
Author(s):  
Yuzhe Cai ◽  
Arash Dahi Taleghani

Abstract Infill completions have been explored by many operators in the last few years as a strategy to increase ultimate recovery from unconventional shale oil reservoirs. The stimulation of infill wells often causes pressure increases, known as fracture-driven interactions (FDIs), in nearby wells. Studies have generally focused on the propagation of fractures from infill wells and pressure changes in treatment wells rather than observation wells. Meanwhile, studies regarding the pressure response in the observation (parent) wells are mainly limited to field observations and conjecture. In this study, we provide a partialcorrective to this gap in the research.We model the pressure fluctuations in parent wells induced by fracking infill wells and provide insight into how field operators can use the pressure data from nearby wells to identify different forms of FDI, including fracture hit (frac-hit) and fracture shadowing. First,we model the trajectory of a fracture propagating from an infill well using the extended finite element methods (XFEM). This method allows us to incorporatethe possible intersection of fractures independent of the mesh gridding. Subsequently, we calculate the pressure response from the frac-hit and stress shadowing using a coupled geomechanics and multi-phase fluid flow model. Through numerical examples, we assess different scenarios that might arise because of the interactions between new fractures and old depleted fractures based on the corresponding pressure behavior in the parent wells. Typically, a large increase in bottomhole pressure over a short period is interpreted as a potential indication of a fracture hit. However, we show that a slower increase in bottomhole pressure may also imply a fracture hit, especially if gas repressurization was performed before the infill well was fracked. Ultimately, we find that well storage may buffer the sudden increase in pressure due to the frac-hit. We conclude by summarizing the different FDIs through their pressure footprints.

2021 ◽  
Author(s):  
Markus Even ◽  
Malte Westerhaus ◽  
Verena Simon

<p>The cavern field at Epe has been brined out of a salt deposit belonging to the lower Rhine salt flat, which extends under the surface of the North German lowlands and part of the Netherlands, and is used to store e.g. natural gas, brine and petroleum. Cavern convergence and operational pressure changes cause surface displacements that have been studied for this work with the help of SAR interferometry (InSAR) using distributed and persistent scatterers. Vertical and East-West movements have been determined based on Sentinel-1 data from ascending and descending orbit. Simple geophysical modeling is used to support InSAR processing and helps to interpret the observations. In particular, an approach is presented that allows to relate the deposit pressures with the observed surface displacements. Seasonal movements occurring over a fen situated over the western part of the storage site further complicate the analysis. Findings are validated with ground truth from levelling and groundwater level measurements.</p><p>For porous storage sites the geomechanic response can be described as elastic: displacement is almost proportional to reservoir pressure and displays the same pronounced seasonal behavior. At Epe the visco-elastic response of the salt layer has to be considered. The general appearance of the surface displacement is that of a strongly smoothed and shifted version of the cavern pressure curve. To deal with this situation a temporal model for displacement with pressure changes (pressure response) is derived that relates cavern pressure with observed displacement based on the theory for visco-elastic behavior of a Kelvin-Voigt body.</p><p>In order to deal successfully with the challenging displacement field at Epe several algorithmic improvements were implemented. To obtain a more complete picture of the displacement field DS pre-processing has been combined with StaMPS. Furthermore, StaMPS was modified in order to support unwrapping with a phase model composed of linear trend, pressure response and a seasonal component (caused by ground water level changes). Finally, refining the iterative estimation scheme of StaMPS helped avoiding leakage of the displacement signal to the spatially correlated noise term.</p><p>Determining vertical and east-west displacements from InSAR line-of-sight displacements is fundamental for interpretation and integration with levelling data. In this study, a basic method of orbit combination and another one supported by a simplistic geophysical model were applied in order to obtain 2D-displacements. For the basic method the north-south component was handled as if it were zero, while the geophysical model predicts the LOS effect of NS displacements. It assumes that caverns act as spherical pressure/volume sources embedded in an elastic half space (“Mogi” sources). To incorporate the visco-elastic component, each cavern is encompassed by a spherical salt shell that obeys the Kelvin-Voigt differential equations. The model is used here to describe either the parameters of the linear component of the displacement model or of the pressure response. A novelty of the orbit combinations implemented for this study is that the different components of the phase model are combined separately. This allows for a better understanding of the phenomena that contribute to the displacement field.</p>


PEDIATRICS ◽  
1988 ◽  
Vol 81 (3) ◽  
pp. 399-403
Author(s):  
Jeffrey Perlman ◽  
Bradley Thach

A variable fluctuating pattern of arterial BP often precedes intraventricular hemorrhage in mechanically ventilated preterm infants. To learn more about the origin of this pattern, arterial BP and respiratory muscle activity were studied in five intubated premature infants who were at high risk for intraventricular hemorrhage. We monitored esophageal pressure, gastric pressure, and arterial BP. Consistent findings were: (1) arterial BP fluctuations have the same frequency and direction of change as esophageal and gastric pressure changes associated with spontaneous breathing (R ranged from .93 to .98, P < .001); (2) spontaneous apneic pauses were accompanied by sudden and complete cessation of arterial BP fluctuations; (3) large "cough-like" fluctuations in esophageal and gastric pressures, seen in all infants, were associated with the largest fluctuations in arterial BP; (4) cutaneous stimulation had negligible effect on fluctuation in arterial BP provided no change in esophageal and gastric pressures occurred; (5) the effects of change in esophageal and gastric pressures on arterial BP were nearly simultaneous (0.05 to 0.25 second latency); (6) respirator pressure fluctuations had negligible effects on the fluctuations in arterial BP. These data suggest that the fluctuations in arterial BP are directly related to respiratory muscle activity and are most consistent with the familiar pulsus paradoxus that occurs in various other cardiorespiratory diseases.


2012 ◽  
Vol 49 (3) ◽  
pp. 357-366 ◽  
Author(s):  
Collins Ifeanyichukwu Anochikwa ◽  
Garth van der Kamp ◽  
S. Lee Barbour

Pore pressures within saturated subsurface formations respond to stress changes due to loading as well as to changes in pore pressure at the boundaries of the formation. The pore-pressure dynamics within a thick aquitard in response to water table fluctuations and mechanical loading due to soil moisture changes have been simulated using a coupled stress–strain and groundwater flow finite element formulation. This modelling approach isolates the component of pore-pressure response of soil moisture loading from that caused by water table fluctuations, by using a method of superposition. In this manner, the contributions to pore-pressure fluctuations that occur as a result of surface moisture loading (e.g., precipitation, evapotranspiration) can be isolated from the pore-pressure record. The required elastic stress–strain properties of the aquitard were obtained from the measured pore-pressure response to barometric pressure changes. Subsequently, the numerical simulations could be calibrated to the measured response by adjusting only the hydraulic conductivity. This paper highlights the significance of moisture loading effects in pore-pressure observations and describes an efficient technique for obtaining in situ stress–strain and hydraulic properties of near-surface aquitards.


2003 ◽  
Vol 47 (5) ◽  
pp. 69-76 ◽  
Author(s):  
Y.C. Choi ◽  
E. Morgenroth

Biofilm detachment under a dynamic change in shear stress was monitored using Focused Beam Reflectance Measurements (FBRM, LASENTEC®) and mass fractionation. An annular reactor was used to grow biofilm with glucose as substrate. Changing the rotational speed on the inner cylinder of the annular reactor from 150 RPM to 420 RPM induced a step increase in shear stress. It was observed that the rate of detachment increased rapidly after increasing shear stress and then returned to the previous level. Erosion was the dominant process of detachment under steady state operation, whereas sloughing was dominant following the sudden increase in shear stress. After reaching steady state detachment under high shear conditions, the rotational speed was decreased for a 12-hour period. During this brief period of lower shear, the biofilm adjusted to this new condition. When the shear stress was increased again, another sharp increase in effluent solids concentration was observed. A decrease in density indicates that the biofilm became more vulnerable to shear stress after being subjected to this short period of low shear.


2008 ◽  
Vol 11 (05) ◽  
pp. 874-881 ◽  
Author(s):  
Djebbar Tiab ◽  
Anh V. Dinh

Summary This paper presents a new procedure to determine interwell connectivity in a reservoir on the basis of fluctuations of bottomhole pressure of both injectors and producers in a waterflood. The method uses a constrained multivariate linear-regression (MLR) analysis to obtain information about permeability trends, channels, and barriers. Previous authors applied the same analysis to injection and production rates to infer connectivity between wells. In order to obtain good results, however, they applied various diffusivity filters to the flow-rate data to account for the time lags and the attenuation. This was a tedious process that requires subjective judgment. Shut-in periods in the data, usually unavoidable when a large number of data points were used, created significant errors in the results and were often eliminated from the analysis. This new method yielded better results compared with the results obtained when production data were used. Its advantages include:no diffusivity filters needed for the analysis,minimal number of data points required to obtain good results,and flexible plan to collect data because all constraints can be controlled at the surface. The new procedure was tested by use of a numerical reservoir simulator. Thus, different cases were run on two fields, one with five injectors and four producers and the other with 25 injectors and 16 producers. For a large waterflood system, multiple wells are present and most of them are active at the same time. In this case, pulse tests or interference tests between two wells are difficult to conduct because the signal can be distorted by other active wells in the reservoir. In the proposed method, interwell connectivity can be obtained quantitatively from multiwell pressure fluctuations without running interference tests. Introduction Well testing is a common and important tool of reservoir characterization. Many well-testing methods have been developed in order to obtain various reservoir properties. Interference tests and pulse tests are used to quantify communication between wells. These methods are often applied to two wells such that one well sending the signals (by changing flow rates) and the other is receiving them (Lee et al. 2003). For a large field such as a waterflood system, however, multiple wells are present, and most of them are active at the same time. In that case, pulse tests or interference tests between two wells are difficult to conduct because the signal can be distorted by other active wells in the reservoir. In this method, data can be obtained from multiwell pressure tests that resemble interference tests. Thus, we can have several wells sending signals and the others receiving the signals at the same time. The wells that are receiving the signal, however, can either be shut in or kept at constant producing rates. The pressures at all wells are recorded simultaneously within a constant time interval. The length of the test will depend on the length of the time interval and the number of data points. Results of this method can be used to optimize operations and economics and enhance oil recovery of existing waterfloods by changing well patterns, changing injection rates, recompletion of wells, and infill drilling. This work is based on previous work conducted by Albertoni and Lake (2003) by use of injection and production rates. In their work, Albertoni and Lake developed and tested different approaches by use of constrained MLR analysis with a numerical simulator and then applied it to a waterflooded field in Argentina. They used diffusivity filters to account for the time lag and attenuation of the data. In his thesis, Dinh (2003) verified the method by use of a different reservoir simulator and applied it to a waterflooded field in Nowata, Oklahoma. He also investigated the effect of shut-in periods and vertical distances on the results. The main objectives of this work are to verify the results obtained from pressure data with results from flow-rate data to propose a new method to determine interwell connectivity and to suggest further research and study on the method. Similar to the method that uses production rates, we will concentrate on a waterflood system only. The reservoir is considered as a system that processes a stimulus (i.e., a well that is sending signals) and returns a response (i.e., a well that is receiving the signals). The effect of the reservoir on the input signal will depend on the location and the orientation of each stimulus/response pair. Because the total pressure changes at active and observation wells are not equal, only the MLR (Albertoni and Lake 2003; Dinh 2003; Albertoni 2002) was used. The effect of diffusion was not significant, thus the diffusivity filters were not used. The method was applied to two synthetic fields, one with five injectors and four producers and the other with 25 injectors and 16 producers.


1959 ◽  
Vol 37 (12) ◽  
pp. 1331-1338
Author(s):  
W. R. Blackmore

A thermistor hypsometer used as a sensitive, recording, gas-pressure measuring device is described. It is shown that the limitation on this device is the noise introduced by the pressure fluctuations over the surface of the boiling liquid. These fluctuations are about ±(5–10) μ(microns) Hg peak-to-peak. When a pressure measurement is averaged over a moderately short period of time it may be estimated to ± 1 μHg.


Author(s):  
Alexander Meire ◽  
Laurent De Moerloose ◽  
Joris Degroote

Abstract Two-phase flows are encountered in a wide range of technological and natural situations. In the last decade, advances in the available computing power have enabled to solve the underlying equations with computational fluid dynamics (CFD) using multi-phase models for the interaction between the different phases. In this study, a volume of fluid (VOF) solver in OpenFOAM is used to investigate the pressure profile in a co-current upward pipe flow of air and water. It is hypothesized that pressure drop events are caused by local buildup of the slower liquid, whereas conservation of volume flow rate forces the dense liquid to accelerate. The calculated pressure gradients are larger than the corresponding experimental data. It is shown that this mismatch might be caused by the evaluation of the momentum balance based on mixture properties; the mixture density increases the effective liquid obstruction and the corresponding pressure drop. Finally, the effect of these pressure fluctuations on the pipe’s vibration is studied using a one-dimensional independent rings structural model.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Stephan Lobitz

Migration is the “movement of people to a new area or country in order to find work or better living conditions” (Oxford dictionary). The term “migration” summarizes forced, reluctant and voluntary migration. Voluntary migration is a comparatively constant event. But reluctant and, in particular, forced migration have been subject to substantial change during the last years. At the end of 2016, more than 17.2 million refugees (+ 5.3 million Palestinians) were on the run outside their home countries. 55% of them fled from Syria (5.5 million), Afghanistan (2.5 million) and South Sudan (1.4 million), respectively. The top hosting countries were not, in fact, the Southern and Western European or North American, but some of the poorest countries in the world. With the refugees from countries where disorders of haemoglobin are very prevalent, the number of patients in the host countries significantly increased within a very short period of time. The extraordinary circumstances required rapid rethinking and adaption and, therefore, did not only pose a big challenge but, in some countries, also a big chance to improve care for patients suffering from hemoglobinopathies. Although there are certainly several trouble spots in the world, the Middle East crisis was and still is currently the most prominent one. There is a significant prevalence of thalassemia and sickle cell disease among the Syrian and Iraqi population and since the chronically ill were presumably those who left their home countries first, there was a dramatic increase in the prevalence of thalassaemia and sickle cell disease in the host countries. Many patients fled to Western and Northern European countries where hemoglobinopathies were very rare and where the healthcare systems were unable to cope with this sudden increase in patient numbers and complications. For example, disease characteristics were much more pronounced than doctors were used to. Complications occurred that physicians only knew from textbooks. In addition, virtually all families needed significant help in psychosocial matters and many refugees were severely traumatized.


1985 ◽  
Vol 25 (02) ◽  
pp. 281-290 ◽  
Author(s):  
Abdurrahman Satman

Satman, Abdurrahman; SPE; Technical U. of Istanbul Abstract This paper discusses the interference test in composite reservoirs. The composite model considers all important parameters of interest: the hydraulic diffusivity, the mobility ratio, the distance to the radial discontinuity, the distance between wells, the wellbore storage, and skin effect at the active well. Type curves expressed as a function of proper combinations of these parameters are presented. Introduction Interference tests are widely used to estimate the reservoir properties. An interference test is a multiwell test that requires at least one active well, either a producer or injector, and at least one observation well. During the test, pressure effects caused by the active well are measured at the shut-in observation wells. Basic techniques for analyzing interference tests in uniform systems are discussed in Ref. 1. Usually, type-curve matching is the preferred technique for analyzing the pressure data from the test. Early interference test studies assumed that the storage capacity of the active well and the skin region around the sandface have a negligible effect on the observation well response. Recently, investigators have focused on wellbore storage and skin effects. Tongpenyai and Raghavan presented a new solution for analyzing the pressure response at the presented a new solution for analyzing the pressure response at the observation well, which took into account the effects of wellbore storage and skin at both the active and the observation wells. They produced type curves expressed as a function of exp(2S) products, the ( / ) ratios, and ( / ) to correlate the pressure response at the observation well. Composite systems are encountered in a wide variety of reservoir situations. In a composite system, there is a circular inner region with fluid and rock properties different from those in the outer region. Such a system can occur in hydrocarbon reservoirs and geothermal reservoirs. The injection of fluids during EOR processes can cause the development of fluid banks around the injection wells. This would be true in the case of a in-situ combustion or a steamflood. In a geothermal reservoir, pressure reduction in the vicinity of the well may cause the phase boundaries. A producing well completed in the center of a circular hot zone surrounded by producing well completed in the center of a circular hot zone surrounded by a concentric cooler water region is also a composite system. During the early to late 1960's, there was great interest in the composite reservoir flow problem. Hurst discussed the "sands in series" problem. He presented the formulas to describe the pressure behavior of problem. He presented the formulas to describe the pressure behavior of the unsteady-state flow phenomenon for fluid movement through two sands in series in a radial configuration, with each sand of different permeability. Mortada studied the interference pressure drop for oil fields located in a nonuniform extensive aquifer comprising two regions of different properties. He presented an expression for the interference pressure drop properties. He presented an expression for the interference pressure drop in an oil field resulting from a constant rate of water influx in another oil field. Loucks and Guerrero presented a qualitative discussion of pressure drop characteristics in composite reservoirs. Ramey and Rowan and pressure drop characteristics in composite reservoirs. Ramey and Rowan and Clegg developed approximate solutions. Refs. 11 through 13 also discuss composite reservoir systems and present either analytical or numerical solutions. Composite system model solutions have been used to determine some critical parameters during the application of EOR processes. The formation of a fluid bank around the injection well makes the reservoir a composite system. Van Poollen and Kazemi discussed how to determine the mean distance to the radial discontinuity in an in-situ combustion project. Refs. 16 and 17 discuss the effect of radial discontinuity in interpretation of pressure falloff tests in reservoirs with fluid banks. Sosa et al. examined the effect of relative permeability and mobility ratio on falloff behavior in reservoirs with water banks. The presence of different temperature zones in nonisothermal reservoirs may resemble permeability boundaries during well testing. Mangold et al. presented a numerical study of a thermal discontinuity in well test analysis. Their results indicated that nonisothermal influence could be detected and accounted for by tests of sufficient duration with suitably placed observation wells. Horne et al. indicated the possibility of determining compressibility and permeability contrasts across the phase boundaries in geothermal reservoirs. The most recent study of well test analysis in composite reservoirs was by Eggenschwiler, Satman et al. Their studies presented a very general composite system model. The problem was solved analytically by using the Laplace transformation with numerical inversion. The solution concerned the transient flow of a slightly compressible fluid in a porous medium during injection or falloff for a single well confined in concentric regions of differing mobilities and hydraulic diffusivities. The system assumed both wellbore storage and a skin effect. Their results indicated that a pseudosteady-state pressure response exists in the transition region between the inner region and outer region semilog straight lines. This response is drawn on a Cartesian vs. plot, the slope of which is used to estimate the bulk volume of the inner region. SPEJ p. 281


Sign in / Sign up

Export Citation Format

Share Document