weak rock mass
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Phanthoudeth Pongpanya ◽  
Takashi Sasaoka2 ◽  
Hideki Shimada ◽  
Vongsavanh Soysouvanh

This paper focuses on the stability analysis and support design of the coal mine tunnel excavated in weak rock mass in an Indonesian underground coal mine through numerical simulations using the FLAC3D software. The PT Gerbang Daya Mandiri (GDM) coal mine situated in Indonesia was selected as a mine site in this study. According to the results of a series of numerical simulations, the stability of the mine tunnel decreases by increasing the depth and stress ratio. Ground control problems, for example falling roof, sidewall collapse, and floor heave are expected unless an appropriate support system is anticipated. Three support systems, including friction rockbolt, steel arch, and shotcrete are discussed as methods to stabilize the roof and sidewalls of the mine tunnel. From the simulated results, the steel arch is considered to be the most effective support method when compared with other support systems. The steel arch which is installed with closer space and larger crosssection delivers a better stability control to the roof and sidewalls of the mine tunnel. Although the stability of the roof and sidewalls of the mine tunnel can be maintained effectively by the steel arch support, the occurrence of floor heave is expected when the mining depth is increased. To control the floor stability of the mine tunnel, three techniques by applying cablebolt, invert-arch floor, and grooving method are therefore investigated and discussed. Based on simulated results, the heaving of the floor is well controlled after the cablebolt, invert-arch floor, and grooving methods are applied. Nevertheless, it is found that controlling the floor heave by cablebolt support could be the most suitable method comparing with other support systems in terms of the installation process, providing flat and safe working conditions of the floor, and economy. Additionally, the cablebolt with closer row space and longer length works more effectively to control the heaving problem of the floor. Keyword


Author(s):  
H. Jangara ◽  
C. Atilla Ozturk

AbstractAlpu lignite field is an important coal deposit with nearly 2 billion tons of coal resources located in the middle of Turkey. The mine deposit consists of three main seams. The thickness of two of them vary from 4 to 30 m. The surrounding rock mass is very poor in terms of strength. The high clay content and weak rock mass make mechanized mining difficult. In this research, applicability of the longwall top coal caving method was investigated. The very weak strength behavior of the coal and the surrounding strata increases the importance of research in the mine site in terms of ground control. The aim is to design the mechanized longwall mine based on ground control principles. First of all, classification of the roof, coal, inter-burden, and floor strata were classified based on geotechnical aspects. Then, cavability index, shield, and floor bearing capacity were investigated. Different methods were applied to understand the limitations of a mechanized system that is very critical due to the very low strength strata. According to the main results, roof strata was classified as immediately caving while mining height was calculated as 5–6 m. Finally, the relations among geotechnical characterizations of roof and floor strata, cutting and caving heights, and required shield capacity were presented based on analytical and numerical applications. The proposed approach can be used as a ground control method for the applicability as well as the limitations of mechanized longwall mining design in weak strata conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xinfeng Wang ◽  
Mingyuan Lu ◽  
Yuhao Gao ◽  
Wenbo Luo ◽  
Wengang Liu

The influence of mining on the upper section of working face leads to the fracture of the lateral key block of the roof. From the goaf to the coal body, a group of “left-middle-right” key blocks are formed. According to the three different spatial position structure relations formed by roadway and broken key block in practical engineering, the mechanical causes of broken structure of key block in roof of roadway along goaf are analyzed. FLAC3D is used to simulate and analyze the deformation characteristics and stress state of key block structure model before and after roadway excavation, and the mechanical characteristics and instability mechanism of key block sliding and breaking under three spatial structure modes are obtained. With the help of the mathematical model of material mechanics, the structural mechanical behavior of key block model of roof before and after roadway excavation and the temporal and spatial evolution law of unloading and breaking are studied. The results show that the complex influence factors of mining disturbance and low strength of the weak rock mass will weaken the internal balance of “masonry beam” structure. When the roadway is located below the fracture line of the key block, the middle key block will rotate and lose stability with the side hinge joint of the goaf as the axis; when the roadway is located in the fracture line of the key block, it is easy for the middle key block to slide and lose stability; when the roadway is located outside the fracture line of the key block, the middle key block is in the state of complete collapse, the mechanical transmission mechanism of the surrounding rock in the vertical direction is weakened, and the surrounding rock is the most stable.


2020 ◽  
Author(s):  
Hossein Jangara ◽  
C. Atilla Ozturk

Abstract Alpu lignite field is an important coal deposit with nearly 2 billion tons of coal resources located in the middle of Turkey. The mine deposit consists of three main seams. The thickness of two of them vary from 4 m to 30 m. The surrounding rock mass is very poor in terms of strength. The high clay content and weak rock mass make mechanized mining difficult. In this research, applicability of the longwall top coal caving method was investigated. The very weak strength behavior of the coal and the surrounding strata increases the importance of research in the mine site in terms of ground control. The aim is to design the mechanized longwall mine based on ground control principles. First of all, classification of the roof, coal, inter-burden, and floor strata were classified based on geotechnical aspects. Then, cavability index, shield, and floor bearing capacity were investigated. Different methods were applied to understand the limitations of a mechanized system that is very critical due to the very low strength strata. According to the main results, roof strata was classified as immediately caving while mining height was calculated as 5 m to 6 m. Finally, the relations among geotechnical characterizations of roof and floor strata, cutting and caving heights, and required shield capacity were presented based on analytical and numerical applications. The proposed approach can be used as a ground control method for the applicability as well as the limitations of mechanized longwall mining design in weak strata conditions.


2020 ◽  
Author(s):  
Hossein Jangara ◽  
C. Atilla Ozturk

Abstract Alpu lignite field is an important coal deposit with nearly 2 billion tons of coal resources located in the middle of Turkey. The mine deposit consists of three main seams. The thickness of two of them vary from 4 m to 30 m. The surrounding rock mass is very poor in terms of strength. The high clay content and weak rock mass make mechanized mining difficult. In this research, applicability of the longwall top coal caving method was investigated. The very weak strength behavior of the coal and the surrounding strata increases the importance of research in the mine site in terms of ground control. The aim is to design the mechanized longwall mine based on ground control principles. First of all, classification of the roof, coal, inter-burden, and floor strata were classified based on geotechnical aspects. Then, cavability index, shield, and floor bearing capacity were investigated. Different methods were applied to understand the limitations of a mechanized system that is very critical due to the very low strength strata. According to the main results, roof strata was classified as immediately caving while mining height was calculated as 5 m to 6 m. Finally, the relations among geotechnical characterizations of roof and floor strata, cutting and caving heights, and required shield capacity were presented based on analytical and numerical applications. The proposed approach can be used as a ground control method for the applicability as well as the limitations of mechanized longwall mining design in weak strata conditions.


2020 ◽  
Vol 222 (1) ◽  
pp. 110-131 ◽  
Author(s):  
J L Kinscher ◽  
F De Santis ◽  
N Poiata ◽  
P Bernard ◽  
K H Palgunadi ◽  
...  

SUMMARY Seismic repeaters are a phenomenon rarely observed in mining environments. In this study, we show that repeaters and associated aseismic slip can be the governing mechanism behind seismic triggering in response to excavation mining, providing new perspectives for rethinking and improving standard procedures for seismic rock burst hazard assessment and mining monitoring. Evidence comes from an extensive multiplet analysis on dense spatiotemporal microseismic event clusters (−2.5 < Mw < 1) that was recorded by a local microseismic network at the Lappberget orebody in the Garpenberg mine in Sweden at around 1 km depth. Analysis involved template matching, clustering, double-difference relocation, source parameter and mechanism estimation, as well as interevent time analysis. The results show that almost 80 per cent of the analysed events can be interpreted as seismic repeaters. Source mechanisms demonstrate systematic strike-slip faulting with a significant reverse faulting component, indicating that triggering of the repeaters is sensitive to increases in the horizontal compressive stresses. We suggest that seismic repeaters represent brittle frictional parts (asperity) of creeping, planar shaped, pre-exiting structures of several metres composed of weak rock-mass materials (e.g. talc) associated with strengthening friction behaviours. This repeater model and the here used definition of asperity thus slightly differs from its meaning in classical seismological models where repeating events are related to the locked fault patches along a creeping fault. In addition, we identified different asperity types for the different repeater families that we interpret as different friction properties. Some multiplet families represent rather a transitional case between multiplet and repeater occurrences that might imply a mixture of weakening and strengthening friction processes, that is, creep and brittle rupture along neighboured plane shaped anisotropies in a heterogeneous rock mass. The exact nature of asperities and seismic and aseismic coupling of the rock mass as well as the propagation mechanism of strain and stress associated with short-term (days to weeks) and long-term (months to years) post-blast creep remains uncertain and needs to be addressed by future investigations. The understanding of these processes is particularly important for assessing hazard of larger dynamic ruptures.


2019 ◽  
Vol 79 (4) ◽  
pp. 1919-1937 ◽  
Author(s):  
Lena Selen ◽  
Krishna Kanta Panthi ◽  
Gunnar Vistnes

AbstractWater tunnels built for hydropower passing through weak and heterogeneous rock mass pose challenges associated to slaking and disintegration, as they are first exposed to dry condition during excavation and are then filled with water to produce hydropower energy. Over the period of operational life, these tunnels are drained periodically for inspections and repair leading to drainage and filling cycles. The weakening of rock mass caused by cycles of drying, saturation and drainage may lead to the propagation of instabilities in the tunnels. Therefore, it is important to study the slaking and disintegration behavior of the weak rock mass consisting of clay and clay-like minerals. This paper assesses the mineralogical composition of flysch and serpentinite from the headrace tunnel of Moglicë Hydropower Project in Albania. Further, to determine the slaking and disintegration behavior of these rocks, extensive testing using both the ISRM, Int J Rock Mech Min Sci Geomech Abstr 16(2):143-151, (1979) suggested test method and a modified variant of this test are performed. Finally, comprehensive assessments, discussions and comparisons are made. It is found that the modified slake durability test better suits for the tunnels built as water conveying systems such as hydropower tunnels.


Sign in / Sign up

Export Citation Format

Share Document