increasing cyclic loading
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 1)

Medicina ◽  
2021 ◽  
Vol 57 (9) ◽  
pp. 899
Author(s):  
An Sermon ◽  
Ladina Hofmann-Fliri ◽  
Ivan Zderic ◽  
Yash Agarwal ◽  
Simon Scherrer ◽  
...  

Background and Objectives: Hip fractures constitute the most debilitating complication of osteoporosis with steadily increasing incidences in the aging population. Their intramedullary nailing can be challenging because of poor anchorage in the osteoporotic femoral head. Cement augmentation of Proximal Femoral Nail Antirotation (PFNA) blades demonstrated promising results by enhancing cut-out resistance in proximal femoral fractures. The aim of this study was to assess the impact of augmentation on the fixation strength of TFN-ADVANCEDTM Proximal Femoral Nailing System (TFNA) blades and screws within the femoral head and compare its effect when they are implanted in centre or anteroposterior off-centre position. Materials and Methods: Eight groups were formed out of 96 polyurethane low-density foam specimens simulating isolated femoral heads with poor bone quality. The specimens in each group were implanted with either non-augmented or cement-augmented TFNA blades or screws in centre or anteroposterior off-centre positions, 7 mm anterior or posterior. Mechanical testing was performed under progressively increasing cyclic loading until failure, in setup simulating an unstable pertrochanteric fracture with a lack of posteromedial support and load sharing at the fracture gap. Varus-valgus and head rotation angles were monitored. A varus collapse of 5° or 10° head rotation was defined as a clinically relevant failure. Results: Failure load (N) for specimens with augmented TFNA head elements (screw/blade centre: 3799 ± 326/3228 ± 478; screw/blade off-centre: 2680 ± 182/2591 ± 244) was significantly higher compared with respective non-augmented specimens (screw/blade centre: 1593 ± 120/1489 ± 41; screw/blade off-centre: 515 ± 73/1018 ± 48), p < 0.001. For both non-augmented and augmented specimens failure load in the centre position was significantly higher compared with the respective off-centre positions, regardless of the head element type, p < 0.001. Augmented off-centre TFNA head elements had significantly higher failure load compared with non-augmented centrally placed implants, p < 0.001. Conclusions: Cement augmentation clearly enhances the fixation stability of TFNA blades and screws. Non-augmented blades outperformed screws in the anteroposterior off-centre position. Positioning of TFNA blades in the femoral head is more forgiving than TFNA screws in terms of failure load.


2020 ◽  
Vol 45 (6) ◽  
pp. 595-600
Author(s):  
Raffael Labèr ◽  
David Jann ◽  
Pascal Behm ◽  
Stephen J. Ferguson ◽  
Florian S. Frueh ◽  
...  

Intramedullary cannulated compression screws have been introduced for the fixation of unstable metacarpal fractures. In the present study, this technique was compared with dorsal compression plating to evaluate its biomechanical performance in stabilizing metacarpal shaft fractures. In a first set of experiments, the biomechanical characteristics of the screws were analysed in an artificial bone model. In subsequent experiments, midshaft osteotomies were performed in human cadaver metacarpals, followed by plating or intramedullary screw osteosynthesis. The metacarpals were tested to failure in cantilever bending, following a stepwise increasing cyclic loading protocol. We found a significantly lower load at failure and a significantly lower number of cycles to failure in the intramedullary screw group, but both methods offered sufficient stability under these loads. With reference to published loads on the metacarpals during use of the hand, we conclude that intramedullary osteosynthesis yields sufficient strength and stiffness for early active motion. A difference in its fixation stability is noted compared with plate fixation, which may not be clinically relevant.


Hand ◽  
2016 ◽  
Vol 12 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Jared M. Mahylis ◽  
Anora K. Burwell ◽  
Laura Bonneau ◽  
Lynn M. Marshall ◽  
Adam J. Mirarchi

Background: Little is known about extensor tendon failure following drill injury at the time of volar plate fixation. Our goals were to analyze extensor tendon injury following simulated drill penetration, and change in tendon displacement during cyclic loading following simulated drill penetration injury. Methods: Extensor pollicis longus (EPL) and extensor carpi radialis brevis (ECRB) tendons were harvested from 9 fresh frozen cadaveric arms. Eighteen EPL and 18 ECRB samples were created from harvested tendons. Drill penetration injury was performed in either a continuous or an oscillating mode. Injured tendons were subjected to 1200 cycles at 1- to 15-kg cyclic load at a frequency of 1 Hz, and analyzed for failure at drill sites and change in displacement throughout the testing cycle. Results: Ten EPL samples and 16 ECRB samples completed testing without failure. Tendon type (ECRB, EPL), mode of injury (continuous, oscillating), and location (proximal, distal) did not affect tendon displacement during loading. A single EPL tendon failed following continuous drill penetration injury. Extensor carpi radialis brevis samples had a mean change in displacement of 2.8 (standard deviation [SD]: 1.5 mm) and 5.9 mm (SD: 4.7 mm) for oscillating and continuous modes, respectively. Six EPL samples had a mean change in displacement of 4.7 (SD: 2.7 mm) and 4.3 mm (SD: 1.8 mm) for oscillating and continuous modes, respectively. Conclusions: Complete extensor tendon failure due to drill penetration was rare. Drill mode did not affect the degree of elongation. Increasing cyclic loading of extensor tendons after drill injury caused modest extensor tendon elongation.


2015 ◽  
Vol 31 (3) ◽  
pp. 1543-1566 ◽  
Author(s):  
Siavash Dorvash ◽  
Shamim N. Pakzad ◽  
Elizabeth L. LaCrosse ◽  
James M. Ricles ◽  
Ian C. Hodgson

Civil structures experience loading scenarios ranging from typical ambient excitations to extreme loads induced by natural events that, depending on their intensity, cause damage. It is important to detect damage before it propagates to become detrimental to integrity and functionality of the structure. Significant research efforts are focused on developing damage detection algorithms to diagnose damage from performance and response of the structure. A major challenge in many existing algorithms is in their validation and absence of real-scale implementation. This paper presents implementation of influence-based damage detection algorithm by implementation on a large-scale structural model (steel beam-to-column moment connection) which experiences progressive damage towards collapse of the system through increasing cyclic loading. IDDA utilizes statistical analysis of correlation functions between the structural responses at different locations. It is shown through this implementation that IDDA, accompanied by a statistical framework, can accurately identify structural changes and indicate the intensity of the damage.


2002 ◽  
Author(s):  
Kensuke Ichinose ◽  
Yuji Funamoto ◽  
Kenji Gomi ◽  
Kiyoshi Taniuchi ◽  
Katsumi Fukuda

2001 ◽  
Vol 123 (3) ◽  
pp. 274-280 ◽  
Author(s):  
Yanyao Jiang

A localized inhomogeneous cyclic plastic deformation phenomenon was experimentally investigated in a mild steel. Small strain gages were utilized to characterize the local deformation within the gage section and the gross deformation was measured with an extensometer. Both fully reversed symmetrical loading and asymmetrical loading with a mean stress were used in the cyclic experiments. Plastic deformation was initiated in local areas of the specimen and it propagated into the whole gage section in the specimen with increasing cyclic loading. The local inhomogeneous cyclic deformation was dependent on the loading magnitude and evolved with continued cyclic loading.


Sign in / Sign up

Export Citation Format

Share Document