scholarly journals Asymmetry induced suppression of chaos

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Animesh Biswas ◽  
Sudhanshu Shekhar Chaurasia ◽  
P. Parmananda ◽  
Sudeshna Sinha

Abstract We explore the dynamics of a group of unconnected chaotic relaxation oscillators realized by mercury beating heart systems, coupled to a markedly different common external chaotic system realized by an electronic circuit. Counter-intuitively, we find that this single dissimilar chaotic oscillator manages to effectively steer the group of oscillators on to steady states, when the coupling is sufficiently strong. We further verify this unusual observation in numerical simulations of model relaxation oscillator systems mimicking this interaction through coupled differential equations. Interestingly, the ensemble of oscillators is suppressed most efficiently when coupled to a completely dissimilar chaotic external system, rather than to a regular external system or an external system identical to those of the group. So this experimentally demonstrable controllability of groups of oscillators via a distinct external system indicates a potent control strategy. It also illustrates the general principle that symmetry in the emergent dynamics may arise from asymmetry in the constituent systems, suggesting that diversity or heterogeneity may have a crucial role in aiding regularity in interactive systems.

2001 ◽  
Vol 13 (5) ◽  
pp. 1003-1021 ◽  
Author(s):  
Jeffrey J. Fox ◽  
Ciriyam Jayaprakash ◽  
DeLiang Wang ◽  
Shannon R. Campbell

We study locally coupled networks of relaxation oscillators with excitatory connections and conduction delays and propose a mechanism for achieving zero phase-lag synchrony. Our mechanism is based on the observation that different rates of motion along different nullclines of the system can lead to synchrony in the presence of conduction delays. We analyze the system of two coupled oscillators and derive phase compression rates. This analysis indicates how to choose nullclines for individual relaxation oscillators in order to induce rapid synchrony. The numerical simulations demonstrate that our analytical results extend to locally coupled networks with conduction delays and that these networks can attain rapid synchrony with appropriately chosen nullclines and initial conditions. The robustness of the proposed mechanism is verified with respect to different nullclines, variations in parameter values, and initial conditions.


1989 ◽  
Vol 256 (2) ◽  
pp. G265-G274 ◽  
Author(s):  
N. G. Publicover ◽  
K. M. Sanders

Mathematical models based on relaxation oscillators have heavily influenced the terminology and experimental designs of investigations in gastrointestinal motility for nearly two decades. Relaxation oscillator equations have been used to stimulate the electrical activities of the esophagus, stomach, small intestine, colon, and rectosigmoid region. It has been suggested that many attributes of gastrointestinal electrical activity cannot be adequately explained by classic "core-conductor" or "cable" models of excitation and conduction. This article critically reviews the relaxation oscillator model and provides an explanation for each of the putative inadequacies of core-conductor theory. Furthermore, we question whether relaxation oscillator equations are able to simulate the waveforms of gastrointestinal slow waves, alterations in waveform in response to drugs or electrical stimulation, patterns of slow-wave activity when stimulated at physiological frequencies, prolonged periods of constant resting membrane potential between gastric slow waves and electrotonic spread into inactive regions. We conclude that the relaxation oscillator equations do not fully describe gastrointestinal electrical activity; excitation and propagation can be modeled by a theory that provides for morphological features, ionic conductances, and other elements included in the cable equations.


2021 ◽  
Vol 17 (3) ◽  
pp. e1008521
Author(s):  
Alberto Pérez-Cervera ◽  
Jaroslav Hlinka

The mechanisms underlying the emergence of seizures are one of the most important unresolved issues in epilepsy research. In this paper, we study how perturbations, exogenous or endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the non-seizing state with a suitable direction and amplitude may cause an immediate transition to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxation oscillators, we show that this is a generic phenomenon, with the size of such delay depending on the slow flow component. Therefore, depending on perturbation amplitudes, frequency and timing, a train of perturbations causes an occurrence increase, decrease or complete suppression of seizures. This dependence lends itself to analysis and mechanistic understanding through methods outlined in this paper. We illustrate this methodology by computing the isochrons, phase response curves and the response to perturbations in several epileptic models possessing different slow vector fields. While our theoretical results are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strategies with effects ranging from mere delaying to full suppression of seizures.


1966 ◽  
Vol 44 (2) ◽  
pp. 301-315 ◽  
Author(s):  
F. A. Roberge ◽  
R. A. Nadeau

After the sinus node was destroyed, its rhythmic activity was simulated by an electronic relaxation oscillator coupled to the beating heart. The output of the oscillator was used to stimulate the right atrium, and the ventricular response was returned to the input of the relaxation oscillator. By manually varying the frequency of this artificial pacemaker it was possible to produce changes in the rate of the atrio–ventricular (A–V) node similar to those obtained by perfusion of the intact sinus node with chronotropic agents. Particular attention was paid to the transitions from "oscillator" rhythm to A–V nodal rhythm, and vice versa. The results provide support for the following hypotheses relative to the intact heart: (i) some form of sinus node activity persists during A–V nodal rhythm, and (ii) the principal pacemakers of the heart, the sinus and A–V nodes, behave as a system of coupled relaxation oscillators.


1967 ◽  
Vol 45 (3) ◽  
pp. 375-388 ◽  
Author(s):  
R. A. Nadeau ◽  
A. K. Amir-Jahed ◽  
F. A. Roberge

During ventricular arrest obtained by injections of acetylcholine into the canine atrioventricular node artery, atrial acceleration of variable magnitude was observed. Upon return of ventricular activity a marked slowing of atrial rate was usually noted, followed by a gradual return to the initial sinus rhythm. Similar phenomena were observed with a preparation in which the sinus node was destroyed and its activity simulated by an electronic relaxation oscillator coupled to the heart in a closed-loop fashion. Model experiments with two interacting relaxation oscillators suggested that atrial acceleration during ventricular arrest, and atrial slowing during the return of ventricular activity, were governed by some sort of feedback from ventricles to sinus node.


Author(s):  
Ned J. Corron ◽  
Jonathan N. Blakely

The properties of nonlinear dynamics and chaos are shown to be fundamental to optimal communication signals subject to two practical and realistic design requirements: (i) operation in a noisy environment and (ii) simple hardware implementation. Starting with a simple electronic circuit, a linear filter receiver is presumed, and the matched optimal communication waveform that maximizes the receiver signal-to-noise performance is derived. A return map using samples from this optimal waveform is conjugate to a shift, thereby implying the waveform is chaotic. The optimal communication waveform for a second simple receiver is similarly derived, and it is found to be an exact solution to a physically realizable chaotic oscillator. Thus, a practical consequence of chaos in these waveforms is the potential for simple and efficient signal generation using chaotic oscillators. A conjecture is made that the optimal communication waveform for any stable infinite impulse response filter is similarly chaotic.


2020 ◽  
Author(s):  
Alberto Pérez-Cervera ◽  
Jaroslav Hlinka

AbstractThe mechanism underlying the emergence of seizures is one of the most important unresolved issues in epilepsy research. In this paper, we study how perturbations, exogenous of endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the non-seizing state with a suitable direction and amplitude may cause an immediate transition to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxation oscillators, we show that this is a generic phenomenon, with the size of such delay depending on the slow flow component. Therefore, depending on perturbation amplitudes, frequency and timing, a train of perturbations causes an occurrence increase, decrease or complete suppression of seizures. This dependence lends itself to analysis and mechanistic understanding through methods outlined in this paper. We illustrate this methodology by computing the isochrons, phase response curves and the response to perturbations in several epileptic models possessing different slow vector fields. While our theoretical results are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strategies with effects ranging from mere delaying to full suppression of seizures.Author summaryDespite its simplicity, the modelling of epileptic dynamics as a slow-fast transition between low and high activity states mediated by some slow feedback variable is a relatively novel albeit fruitful approach. This study is the first, to our knowledge, characterizing the response of such slow-fast models of epileptic brain to perturbations by computing its isochrons. Besides its numerical computation, we theoretically determine which factors shape the geometry of isochrons for planar slow-fast oscillators. As a consequence, we introduce a theoretical approach providing a clear understanding of the response of perturbations of slow-fast oscillators. Within the epilepsy context, this elucidates the origin of the contradictory role of interictal epileptiform discharges in the transition to seizure, manifested by both pro-convulsive and anti-convulsive effect depending on the amplitude, frequency and timing. More generally, this paper provides theoretical framework highlighting the role of the of the slow flow component on the response to perturbations in relaxation oscillators, pointing to the general phenomena in such slow-fast oscillators ubiquitous in biological systems.


2021 ◽  
Author(s):  
Jintong Liu ◽  
Jing Huang ◽  
Lei Zhang ◽  
Jianping Lei

We review the general principle of the design and functional modulation of nanoscaled MOF heterostructures, and biomedical applications in enhanced therapy.


Sign in / Sign up

Export Citation Format

Share Document