scholarly journals Reversal of autoimmunity by mixed chimerism enables reactivation of β cells and transdifferentiation of α cells in diabetic NOD mice

2020 ◽  
Vol 117 (49) ◽  
pp. 31219-31230
Author(s):  
Shanshan Tang ◽  
Mingfeng Zhang ◽  
Samuel Zeng ◽  
Yaxun Huang ◽  
Melissa Qin ◽  
...  

Type 1 diabetes (T1D) results from the autoimmune destruction of β cells, so cure of firmly established T1D requires both reversal of autoimmunity and restoration of β cells. It is known that β cell regeneration in nonautoimmune diabetic mice can come from differentiation of progenitors and/or transdifferentiation of α cells. However, the source of β cell regeneration in autoimmune nonobese diabetic (NOD) mice remains unclear. Here, we show that, after reversal of autoimmunity by induction of haploidentical mixed chimerism, administration of gastrin plus epidermal growth factor augments β cell regeneration and normalizes blood glucose in the firmly established diabetic NOD mice. Using transgenic NOD mice with inducible lineage-tracing markers for insulin-producing β cells, Sox9+ductal progenitors, Nestin+mesenchymal stem cells, and glucagon-producing α cells, we have found that both reactivation of dysfunctional low-level insulin expression (insulinlo) β cells and neogenesis contribute to the regeneration, with the latter predominantly coming from transdifferentiation of α cells. These results indicate that, after reversal of autoimmunity, reactivation of β cells and transdifferentiation of α cells can provide sufficient new functional β cells to reach euglycemia in firmly established T1D.

2002 ◽  
Vol 11 (6) ◽  
pp. 519-528 ◽  
Author(s):  
Wilma L. Suarez-Pinzon ◽  
Yvonne Marcoux ◽  
Aziz Ghahary ◽  
Alex Rabinovitch

Nonobese diabetic (NOD) mice develop diabetes and destroy syngeneic islet grafts through an autoimmune response. Because transforming growth factor (TGF)-β1 downregulates immune responses, we tested whether overexpression of TGF-β1 by gene transfection of NOD mouse islets could protect β-cells in islet grafts from autoimmune destruction. NOD mouse islet cells were transfected with an adenoviral DNA expression vector encoding porcine latent TGF-β1 (Ad TGF- β1) or the adenoviral vector alone (control Ad vector). The frequency of total islet cells expressing TGF-1 protein was increased from 12±1% in control Ad vector-transfected cells to 89 ± 4% in Ad TGF-β1-transfected islet cells, and the frequency of β-cells that expressed TGF-β1 was increased from 12 ± 1% to 60 ± 7%. Also, secretion of TGF-β1 was significantly increased in islets that overexpressed TGF-β1. Ad TGF-β1-transfected NOD mouse islets that overexpressed TGF-β1 prevented diabetes recurrence after transplantation into diabetic NOD mice for a median of 22 days compared with only 7 days for control Ad vector-transfected islets (p = 0.001). Immunohistochemical examination of the islet grafts revealed significantly more TGF-β1+ cells and insulin+ cells and significantly fewer CD45+ leukocytes in Ad TGF-β1-transfected islet grafts. Also, islet β-cell apoptosis was significantly decreased whereas apoptosis of graft-infiltrating leukocytes was significantly increased in Ad TGF-β1-transfected islet grafts. These observations demonstrate that overexpression of TGF-β1, by gene transfection of NOD mouse islets, protects islet β-cells from apoptosis and autoimmune destruction and delays diabetes recurrence after islet transplantation.


Author(s):  
Young-Sun Lee ◽  
Gyun Jee Song ◽  
Hee-Sook Jun

Betacellulin (BTC), an epidermal growth factor family, is known to promote β-cell regeneration. Recently, pancreatic α-cells have been highlighted as a source of new β-cells. We investigated the effect of BTC on α-cells. Insulin+glucagon+ double stained bihormonal cell levels and pancreatic and duodenal homeobox-1 expression were increased in mice treated with recombinant adenovirus-expressing BTC (rAd-BTC) and β-cell-ablated islet cells treated with BTC. In the islets of rAd-BTC-treated mice, both BrdU+glucagon+ and BrdU+insulin+ cell levels were significantly increased, with BrdU+glucagon+ cells showing the greater increase. Treatment of αTC1-9 cells with BTC significantly increased proliferation and cyclin D2 expression. BTC induced phosphorylation of ErbB receptors in αTC1-9 cells. The proliferative effect of BTC was mediated by ErbB-3 or ErbB-4 receptor kinase. BTC increased phosphorylation of ERK1/2, AKT, and mTOR and PC1/3 expression and GLP-1 production in α-cells, but BTC-induced proliferation was not changed by the GLP-1 receptor antagonist, exendin-9. We suggest that BTC has a direct role in α-cell proliferation via interaction with ErbB-3 and ErbB-4 receptors, and these increased α-cells might be a source of new β-cells.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ka-Cheuk Liu ◽  
Alethia Villasenor ◽  
Maria Bertuzzi ◽  
Nicole Schmitner ◽  
Niki Radros ◽  
...  

To investigate the role of the vasculature in pancreatic β-cell regeneration, we crossed a zebrafish β-cell ablation model into the avascular npas4l mutant (i.e. cloche). Surprisingly, β-cell regeneration increased markedly in npas4l mutants owing to the ectopic differentiation of β-cells in the mesenchyme, a phenotype not previously reported in any models. The ectopic β-cells expressed endocrine markers of pancreatic β-cells, and also responded to glucose with increased calcium influx. Through lineage tracing, we determined that the vast majority of these ectopic β-cells has a mesodermal origin. Notably, ectopic β-cells were found in npas4l mutants as well as following knockdown of the endothelial/myeloid determinant Etsrp. Together, these data indicate that under the perturbation of endothelial/myeloid specification, mesodermal cells possess a remarkable plasticity enabling them to form β-cells, which are normally endodermal in origin. Understanding the restriction of this differentiation plasticity will help exploit an alternative source for β-cell regeneration.


2020 ◽  
Author(s):  
Ada Admin ◽  
Geming Lu ◽  
Francisco Rausell-Palamos ◽  
Jiamin Zhang ◽  
Zihan Zheng ◽  
...  

A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties <i>in vitro</i>. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity <i>in vitro</i>. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-γ+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D.


2020 ◽  
Author(s):  
David G. Ramirez ◽  
Awaneesh K. Upadhyay ◽  
Vinh T. Pham ◽  
Mark Ciccaglione ◽  
Mark A Borden ◽  
...  

AbstractType 1 diabetes (T1D) results from immune infiltration and destruction of insulin-producing β-cells within the pancreatic islets of Langerhans (insulitis), resulting in loss of glucose homeostasis. Early diagnosis during pre-symptomatic T1D would allow for therapeutic intervention prior to substantial loss of β-cell mass at T1D onset. There are limited methods to track the progression of insulitis and β-cell mass decline in pre-symptomatic T1D. During insulitis, the islet microvasculature increases permeability, such that sub-micron sized particles can extravasate and accumulate within the islet microenvironment. Ultrasound is a widely deployable and cost-effective clinical imaging modality. However, conventional microbubble contrast agents are restricted to the vasculature. Sub-micron sized nanodroplet (ND) phasechange agents can be vaporized into micron-sized bubbles; serving as a circulating microbubble precursor. We tested if NDs extravasate into the immune-infiltrated islet microenvironment. We performed ultrasound contrast-imaging following ND infusion in NOD mice and NOD;Rag1ko controls, and tracked diabetes development. We measured the biodistribution of fluorescently labeled NDs, with histological analysis of insulitis. Ultrasound contrast signal was elevated in the pancreas of 10w NOD mice following ND infusion and vaporization, but was absent in both the non-infiltrated kidney of NOD mice and pancreas of Rag1ko controls. High contrast elevation also correlated with rapid diabetes onset. In pancreata of NOD mice, infiltrated islets and nearby exocrine tissue were selectively labeled with fluorescent NDs. Thus, contrast ultrasound imaging with ND phase-change agents can detect insulitis prior to diabetes onset. This will be important for monitoring disease progression to guide and assess preventative therapeutic interventions for T1D.SignificanceThere is a need for imaging methods to detect type1 diabetes (T1D) progression prior to clinical diagnosis. T1D is a chronic disease that results from autoreactive T cells infiltrating the islet of Langerhans and destroying insulin-producing β-cells. Overt disease takes years to present and is only diagnosed after significant β-cells loss. As such, the possibility of therapeutic intervention to preserve β-cell mass is hampered by an inability to follow pre-symptomatic T1D progression. There are immunotherapies that can delay T1D development. However identifying ‘at risk’ individuals, and tracking whether therapeutic interventions are impacting disease progression, prior to T1D onset, is lacking. A method to detect insulitis and β-cell mass decline would present an opportunity to guide therapeutic treatments to prevent T1D.


2021 ◽  
Author(s):  
Ka-Cheuk Liu ◽  
Alethia Villasenor ◽  
Nicole Schmitner ◽  
Niki Radros ◽  
Linn Rautio ◽  
...  

AbstractTo investigate the role of the vasculature in pancreatic β-cell regeneration, we crossed a zebrafish β-cell ablation model into the avascular npas4l mutant (i.e. cloche). Surprisingly, β-cell regeneration increased markedly in npas4l mutants owing to the ectopic differentiation of β-cells in the mesenchyme, a phenotype not previously reported in any models. The ectopic β-cells expressed endocrine markers of pancreatic β-cells, and also reduced glucose levels in the β-cell ablation model. Through lineage tracing, we determined that the vast majority of these ectopic β-cells derived from the mesodermal lineage. Notably, ectopic β-cells were found in npas4l mutants as well as following knockdown of the endothelial determinant Etv2. Together, these data indicate that in the absence of endothelial specification, mesodermal cells possess a remarkable plasticity enabling them to form β-cells, which are normally endodermal in origin. Understanding the restriction of this differentiation plasticity will help exploit an alternative source for β-cell regeneration.


2020 ◽  
Author(s):  
Ada Admin ◽  
Geming Lu ◽  
Francisco Rausell-Palamos ◽  
Jiamin Zhang ◽  
Zihan Zheng ◽  
...  

A failure in self-tolerance leads to autoimmune destruction of pancreatic β-cells and type 1 diabetes (T1D). Low molecular weight dextran sulfate (DS) is a sulfated semi-synthetic polysaccharide with demonstrated cytoprotective and immunomodulatory properties <i>in vitro</i>. However, whether DS can protect pancreatic β-cells, reduce autoimmunity and ameliorate T1D is unknown. Here we report that DS, but not dextran, protects human β-cells against cytokine-mediated cytotoxicity <i>in vitro</i>. DS also protects mitochondrial function and glucose-stimulated insulin secretion and reduces chemokine expression in human islets in a pro-inflammatory environment. Interestingly, daily treatment with DS significantly reduces diabetes incidence in pre-diabetic non-obese diabetic (NOD) mice, and most importantly, reverses diabetes in early-onset diabetic NOD mice. DS decreases β-cell death, enhances islet heparan sulfate (HS)/heparan sulfate proteoglycan (HSPG) expression and preserves β-cell mass and plasma insulin in these mice. DS administration also increases the expression of the inhibitory co-stimulatory molecule programmed death-1 (PD-1) in T-cells, reduces interferon-γ+ CD4+ and CD8+ T-cells and enhances the number of FoxP3+ cells. Collectively, these studies demonstrate that the action of one single molecule, DS, on β-cell protection, extracellular matrix preservation and immunomodulation can reverse diabetes in NOD mice highlighting its therapeutic potential for the treatment of T1D.


2003 ◽  
Vol 198 (7) ◽  
pp. 1103-1106 ◽  
Author(s):  
Irina Apostolou ◽  
Zhenyue Hao ◽  
Klaus Rajewsky ◽  
Harald von Boehmer

In type 1 diabetes, autoimmune T cells cause destruction of pancreatic β cells by largely unknown mechanism. Previous analyses have shown that β cell destruction is delayed but can occur in perforin-deficient nonobese diabetic (NOD) mice and that Fas-deficient NOD mice do not develop diabetes. However, because of possible pleiotropic functions of Fas, it was not clear whether the Fas receptor was an essential mediator of β cell death in type 1 diabetes. To directly test this hypothesis, we have generated a β cell–specific knockout of the Fas gene in a transgenic model of type 1 autoimmune diabetes in which CD4+ T cells with a transgenic TCR specific for influenza hemagglutinin (HA) are causing diabetes in mice that express HA under control of the rat insulin promoter. Here we show that the Fas-deficient mice develop autoimmune diabetes with slightly accelerated kinetics indicating that Fas-dependent apoptosis of β cells is a dispensable mode of cell death in this disease.


2008 ◽  
Vol 82 (13) ◽  
pp. 6139-6149 ◽  
Author(s):  
Kate L. Graham ◽  
Natalie Sanders ◽  
Yan Tan ◽  
Janette Allison ◽  
Thomas W. H. Kay ◽  
...  

ABSTRACT Infection modulates type 1 diabetes, a common autoimmune disease characterized by the destruction of insulin-producing islet β cells in the pancreas. Childhood rotavirus infections have been associated with exacerbations in islet autoimmunity. Nonobese diabetic (NOD) mice develop lymphocytic islet infiltration (insulitis) and then clinical diabetes, whereas NOD8.3 TCR mice, transgenic for a T-cell receptor (TCR) specific for an important islet autoantigen, show more rapid diabetes onset. Oral infection of infant NOD mice with the monkey rotavirus strain RRV delays diabetes development. Here, the effect of RRV infection on diabetes development once insulitis is established was determined. NOD and NOD8.3 TCR mice were inoculated with RRV aged ≥12 and 5 weeks, respectively. Diabetes onset was significantly accelerated in both models (P < 0.024), although RRV infection was asymptomatic and confined to the intestine. The degree of diabetes acceleration was related to the serum antibody titer to RRV. RRV-infected NOD mice showed a possible trend toward increased insulitis development. Infected males showed increased CD8+ T-cell proportions in islets. Levels of β-cell major histocompatibility complex class I expression and islet tumor necrosis factor alpha mRNA were elevated in at least one model. NOD mouse exposure to mouse rotavirus in a natural experiment also accelerated diabetes. Thus, rotavirus infection after β-cell autoimmunity is established affects insulitis and exacerbates diabetes. A possible mechanism involves increased exposure of β cells to immune recognition and activation of autoreactive T cells by proinflammatory cytokines. The timing of infection relative to mouse age and degree of insulitis determines whether diabetes onset is delayed, unaltered, or accelerated.


Sign in / Sign up

Export Citation Format

Share Document