incomplete reproductive isolation
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Juan F. Masello ◽  
Peter G. Ryan ◽  
Lara D. Shepherd ◽  
Petra Quillfeldt ◽  
Yves Cherel ◽  
...  

AbstractInterspecific introgression can occur between species that evolve rapidly within an adaptive radiation. Pachyptila petrels differ in bill size and are characterised by incomplete reproductive isolation, leading to interspecific gene flow. Salvin’s prion (Pachyptila salvini), whose bill width is intermediate between broad-billed (P. vittata) and Antarctic (P. desolata) prions, evolved through homoploid hybrid speciation. MacGillivray’s prion (P. macgillivrayi), known from a single population on St Paul (Indian Ocean), has a bill width intermediate between salvini and vittata and could also be the product of interspecies introgression or hybrid speciation. Recently, another prion population phenotypically similar to macgillivrayi was discovered on Gough (Atlantic Ocean), where it breeds 3 months later than vittata. The similarity in bill width between the medium-billed birds on Gough and macgillivrayi suggest that they could be closely related. In this study, we used genetic and morphological data to infer the phylogenetic position and evolutionary history of P. macgillivrayi and the Gough medium-billed prion relative other Pachyptila taxa, to determine whether species with medium bill widths evolved through common ancestry or convergence. We found that Gough medium-billed prions belong to the same evolutionary lineage as macgillivrayi, representing a new population of MacGillivray’s prion that originated through a colonisation event from St Paul. We show that macgillivrayi’s medium bill width evolved through divergence (genetic drift) and independently from that of salvini, which evolved through hybridisation (gene flow). This represents the independent convergence towards a similarly medium-billed phenotype. The newly discovered MacGillivray’s prion population on Gough is of utmost conservation relevance, as the relict macgillivrayi population in the Indian Ocean is very small.


2021 ◽  
Author(s):  
Cody K. Porter ◽  
John L. Confer ◽  
Kyle R. Aldinger ◽  
Ronald A. Canterbury ◽  
Jeffrey L. Larkin ◽  
...  

2021 ◽  
Vol 288 (1948) ◽  
Author(s):  
Shelley A. Sianta ◽  
Kathleen M. Kay

Understanding the relative importance of reproductive isolating mechanisms across the speciation continuum remains an outstanding challenge in evolutionary biology. Here, we examine a common isolating mechanism, reproductive phenology, between plant sister taxa at different stages of adaptive divergence to gain insight into its relative importance during speciation. We study 17 plant taxa that have independently adapted to inhospitable serpentine soils, and contrast each with a nonserpentine sister taxon to form pairs at either ecotypic or species-level divergence. We use greenhouse-based reciprocal transplants in field soils to quantify how often flowering time (FT) shifts accompany serpentine adaptation, when FT shifts evolve during speciation, and the genetic versus plastic basis of these shifts. We find that genetically based shifts in FT in serpentine-adapted taxa are pervasive regardless of the stage of divergence. Although plasticity increases FT shifts in five of the pairs, the degree of plasticity does not differ when comparing ecotypic versus species-level divergence. FT shifts generally led to significant, but incomplete, reproductive isolation that did not vary in strength by stage of divergence. Our work shows that adaptation to a novel habitat may predictably drive phenological isolation early in the speciation process.


2021 ◽  
Author(s):  
Darren Irwin ◽  
Dolph Schluter

It is thought that two species can coexist if they use different resources present in the environment, yet this assumes that species are completely reproductively isolated. Closely related species often interbreed, raising the question of how this might affect coexistence. We model coexistence outcomes for two sympatric species that are ecologically differentiated but have incomplete reproductive isolation. Results show that the consequences of interbreeding depend crucially on hybrid fitness. When hybrid fitness is high, just a small rate of hybridization can lead to collapse of two species into one. Low hybrid fitness can cause population declines, making extinction of one or both species likely. The intrinsic growth rate of the population has an important influence on the outcome. High intrinsic growth rates result in higher reproductive rates when populations are below carrying capacity, reducing the probability of extinction and increasing the likelihood of stable coexistence at moderate levels of assortative mating and hybrid fitness. Very strong but incomplete assortative mating can induce low hybrid fitness via a mating disadvantage to rare genotypes, and this can stabilize coexistence of two species at high but incomplete levels of assortative mating. Given these results and evidence that it may take many millions of years of divergence before related species become sympatric, we postulate that coexistence of closely-related species is more often limited by insufficient assortative mating than by insufficient ecological differentiation.


2020 ◽  
Author(s):  
◽  
Alwyn Clark Go

Speciation occurs when reproductive barriers prevent the exchange of genetic information between individuals. A common form of reproductive barrier between species capable of interbreeding is hybrid sterility. Genomic incompatibilities between the divergent genomes of different species contribute to a reduction in hybrid fitness. These incompatibilities continue to accumulate after speciation, therefore, young divergent taxa with incomplete reproductive isolation are important in understating the genetics leading to speciation. Here, I use two Drosophila subspecies pairs. The first is D. willistoni consisting of D. w. willistoni and D. w. winge. The second subspecies pair is D. pseudoobscura, which is composed of D. p. pseudoobscura and D. p. bogotana. Both subspecies pairs are at the early stages of speciation and show incomplete reproductive isolation through unidirectional hybrid male sterility. In this thesis, I performed an exploratory survey of genome-wide expression analysis using RNA-sequencing on D. willistoni and determined the extent of regulatory divergence between the subspecies using allele-specific expression analysis. I found that misexpressed genes showed a degree of tissue specificity and that the sterile male hybrids had a higher proportion of misexpressed genes in the testes relative to the fertile hybrids. The analysis of regulatory divergence between this subspecies pair found a large (66-70%) proportion of genes with conserved regulatory elements. Of the genes showing evidence or regulatory divergence between subspecies, cis-regulatory divergence was more common than other types. In the D. pseudoobscura subspecies pair, I compared sequence and expression divergence and found no support for directional selection driving gene misexpression in their hybrids. Allele-specific expression analysis revealed that compensatory cis-trans mutations partly explained gene misexpression in the hybrids. The remaining hybrid misexpression occurs due to interacting gene networks or possible co-option of cis-regulatory elements by divergent transacting factors. Overall, the results of this thesis highlight the role of regulatory interactions in a hybrid genome and how these interactions could lead to hybrid breakdown by disrupting gene interaction networks.


Sign in / Sign up

Export Citation Format

Share Document