locomotory mode
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Evolution ◽  
2021 ◽  
Author(s):  
Jonathan A. Nations ◽  
Genevieve G. Mount ◽  
Sara M. Morere ◽  
Anang S. Achmadi ◽  
Kevin C. Rowe ◽  
...  

2020 ◽  
Vol 8 ◽  
Author(s):  
Wei-hang Geng ◽  
Xiao-ping Wang ◽  
Li-feng Che ◽  
Xin Wang ◽  
Rui Liu ◽  
...  

The research of phenotypic convergence is of increasing importance in adaptive evolution. Locomotory modes play important roles in the adaptive evolution of species in the Euarchontoglires, however, the investigation of convergent evolution of the locomotory modes across diverse Euarchontoglire orders is incomplete. We collected measurements of three phalangeal indices of manual digit III, including metacarpal of digit III (MC3), manus proximal phalanx of digit III (MPP3), and manus intermediate phalanx of digit III (MIP3), from 203 individuals of 122 Euarchontoglires species representing arboreal (orders Scandentia, Rodentia, and Primates), terrestrial (orders Scandentia and Rodentia), and gliding (orders Dermoptera and Rodentia) locomotory modes. This data can be separated into seven groups defined by order and locomotory mode. Based on combination of the three phalangeal indices, the Principle component analyses (PCA), phylomorphospace plot, and C-metrics analyses clustered the arboreal species of Scandentia, Rodentia, and Primates together and the terrestrial species of Scandentia and Rodentia together, showing the convergent signal in evolution of the arboreal (C1 = 0.424, P < 0.05) and terrestrial (C1 = 0.560, P < 0.05) locomotory modes in Euarchontoglires. Although the gliding species from Dermoptera and Rodentia did not cluster together, they also showed the convergent signal (C1 = 0.563, P < 0.05). Our work provides insight into the convergent evolution of locomotory modes in Euarchontoglires, and reveals that these three indices contribute valuable information to identify convergent evolution in Euarchontoglires.


2016 ◽  
Vol 4 (1) ◽  
pp. cow008 ◽  
Author(s):  
Jodie L. Rummer ◽  
Sandra A. Binning ◽  
Dominique G. Roche ◽  
Jacob L. Johansen

Author(s):  
J. Tarquini ◽  
N. Toledo ◽  
C. C. Morgan ◽  
L. H. Soibelzon

ABSTRACTThe procyonid †Cyonasua is endemic to South America and recorded from the Late Miocene to the Early Pleistocene. This paper studies the forelimb of †Cyonasua sp. (late Pliocene of Miramar, Argentina), using an ecomorphological approach to infer morphological adaptations linked to substrate preference and locomotory mode, as well as to grasping and digging ability. Twenty linear measurements of forelimb and pectoral girdle were taken from †Cyonasua sp. and a sample of 87 specimens of extant carnivoran families (Procyonidae, Mustelidae, Ursidae, Viverridae, Canidae and Felidae). Raw values were transformed to minimise the effect of size. Morphological variation was explored by principal component analysis (PCA); substrate preference and locomotory mode were further analysed by multivariate analysis of variance (MAV) and discriminant analysis (DA); grasping and digging ability were analysed by DA. In the PCA morphospace, †Cyonasua sp. occupied a unique position, close to extant procyonids. DA classified it as non-specialised digger with poor grasping ability. The results lead to the interpretation of †Cyonasua sp. as having a moderately stabilised elbow joint with poor pronation–supination, although some climbing skills cannot be ruled out. Thus, †Cyonasua sp. could have had generalised habits, in agreement with reconstructed palaeoenvironmental conditions.


2013 ◽  
Vol 151 (1) ◽  
pp. 87-99 ◽  
Author(s):  
MARIA ZAMMIT ◽  
BENJAMIN P. KEAR ◽  
RACHEL M. NORRIS

AbstractReconstructing the swimming capabilities of extinct marine tetrapods is critical for unravelling broader questions about their palaeobiology, palaeoecology and palaeobiogeography. Ichthyosaurs have long been the subject of such investigations because, alongside cetaceans, they are one of the few tetrapod lineages to achieve a highly specialized fish-like body plan. The dominant locomotory mode for the majority of derived, post-Triassic ichthyosaurs is hypothesized to have been caudal fin-driven propulsion. Limb-based swimming has however been suggested for some highly autapomorphic forms, such as the Cretaceous genus Platypterygius, which has a remarkably robust humeral morphology and exceptionally broad paddle-like limbs. To evaluate this atypical lifestyle model, we conducted a comprehensive comparative osteological assessment of Platypterygius in relation to extant marine mammals, whose analogous skeletal frameworks provide a structurally compatible selection of alternate propulsive strategies. Based on a proxy exemplar of the most completely known species, P. australis from the Early Cretaceous of Australia, the propodial shape, absence of functional elbow/knee joints, tightly interlocking carpals, hyperphalangy and extreme reduction of the pelvic girdle are most similar to cetaceans as opposed to pinnipeds or dugongs. There is no obvious structural consistency with aquatic mammals that use sustained forelimb-driven swimming. The exceptionally broad fore-paddle (a product of hyperdactyly) and extensive humeral muscle insertions might therefore have had a cetacean-like role in enhancing manoeuvrability and acceleration performance. We conclude that, despite its atypical features, P. australis was most likely similar to other ichthyosaurs in using lateral sweeps of the tailfin to generate primary propulsive thrust.


Sign in / Sign up

Export Citation Format

Share Document