phenotypic convergence
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 36)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Anna L Boss ◽  
Tanvi Damani ◽  
Lawrence W Chamley ◽  
Jo L James ◽  
Anna E S Brooks

Single-cell technologies (RNA-sequencing, flow cytometry) are critical tools to reveal how cell heterogeneity impacts developmental pathways. The placenta is a fetal exchange organ, containing a heterogeneous mix of mesenchymal cells (fibroblasts, myofibroblasts, perivascular, and progenitor cells) . Placental mesenchymal stromal cells (pMSC) are also routinely isolated, for therapeutic and research purposes. However, our understanding of the diverse phenotypes of placental mesenchymal lineages, and their relationships remain unclear. We designed a 23-colour flow cytometry panel to assess mesenchymal heterogeneity in first-trimester human placentae. . Four distinct mesenchymal subsets were identified; CD73+CD90+ mesenchymal cells, CD146+CD271+ perivascular cells, podoplanin+CD36+ stromal cells, and CD26+CD90+ myofibroblasts. CD73+CD90+ and podoplanin+CD36+ cells expressed markers consistent with cultured pMSCs, and were explored further. Despite their distinct ex-vivo phenotype, in culture CD73+CD90+ cells and podoplanin+CD36+ cells underwent phenotypic convergence, losing CD271 or CD36 expression respectively, and homogenously exhibiting a basic MSC phenotype (CD73+CD90+CD31-CD144-CD45-). However, some markers (CD26, CD146) were not impacted, or differentially impacted by culture in different populations. Comparisons of cultured phenotypes to pMSCs further suggested cultured pMSCs originate from podoplanin+CD36+ cells as the . This highlights the importance of detailed cell phenotyping to optimise therapeutic capacity, and ensure use of relevant cells in functional assays.


2021 ◽  
Author(s):  
Pascaline Francelle ◽  
Jean R David ◽  
Amir Yassin

In Drosophila, comparisons of the thermal plasticity of pigmentation across serially homologous abdominal segments have been conducted in two species, namely Drosophila melanogaster and D. kikkawai. Pigmentation variation has different genetic architecture in the two species, being oligogenic in the former and monogenic in the later. Here, we analyze the thermal plasticity of abdominal pigmentation in a third species, D. erecta, which is phylogenetically close to D. melanogaster but like D. kikkawai has a monogenic basis for pigmentation variation. However, the underlying locus differs between D. erecta and D. kikkawai, being the X-linked melanin-synthesis gene tan in the former and the autosomal transcription factor pdm3 in the later. We found that in spite of a low overall plasticity in monogenic species compared to D. melanogaster, the two monogenic species showed divergent plasticity patterns in respect to the response to temperature and to the degree of dominance in heterozygotes. Those results provide new insights on the dependence of the degree of plasticity on the genetic architecture as well as on the extent of phenotypic convergence.


2021 ◽  
Author(s):  
Theo Busschau ◽  
Stephane Boissinot

Phenotypic convergence of traits in similar environments can provide insights into the evolutionary processes shaping trait evolution. Among squamate reptiles, horn-like cephalic appendages have evolved under various selective pressures, including selection for defence, crypsis or sexual selection. Yet, among snakes, particularly vipers, the functional and evolutionary significance of horns are unknown. We used a comparative phylogenetic approach with habitat and diet data on 263 viper taxa to shed light on the selective pressures underlying horn evolution in vipers. We detected significant correlations with habitat but not diet. The relative positions of horns are ecologically divergent in that supranasal horns are positively correlated with terrestrial forest habitats while supraocular horns are negatively correlated with terrestrial forest habitats and associated with arboreal or sparsely vegetated habitats. Multiple independent origins of supranasal or supraocular horns in similar habitats provide evidence of adaptive convergence. Comparisons with other snake lineages suggest that cephalic appendages may have evolved under selection for crypsis in ambush foraging snakes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Honghao Yin ◽  
Rui Guo ◽  
Huanyu Zhang ◽  
Songyi Liu ◽  
Yuehua Gong ◽  
...  

Gastric cancer (GC) development trends have identified multiple processes ranging from inflammation to carcinogenesis, however, key pathogenic mechanisms remain unclear. Tissue microenvironment (TME) cells are critical for the progression of malignant tumors. Here, we generated a dynamic transcriptome map of various TME cells during multi-disease stages using single-cell sequencing analysis. We observed a set of key transition markers related to TME cell carcinogenic evolution, and delineated landmark dynamic carcinogenic trajectories of these cells. Of these, macrophages, fibroblasts, and endothelial cells exerted considerable effects toward epithelial cells, suggesting these cells may be key TME factors promoting GC occurrence and development. Our results suggest a phenotypic convergence of different TME cell types toward tumor formation processes in GC. We believe our data would pave the way for early GC detection, diagnosis, and treatment therapies.


2021 ◽  
Author(s):  
Noëlle K. J. Bittner ◽  
Katya L. Mack ◽  
Michael W. Nachman

AbstractDesert specialization has arisen multiple times across rodents and is often associated with a suite of convergent phenotypes, including modification of the kidneys to mitigate water loss. However, the extent to which phenotypic convergence in desert rodents is mirrored at the molecular level is unknown. Here, we sequenced kidney mRNA and assembled transcriptomes for three pairs of rodent species to search for convergence in gene expression and amino acid sequence associated with adaptation to deserts. We conducted phylogenetically-independent comparisons between a desert specialist and a non-desert relative in three families representing ∼70 million years of evolution. Overall, patterns of gene expression faithfully recapitulated the phylogeny of these six taxa. However, we found that 8.6% of all genes showed convergent patterns of expression evolution between desert and non-desert taxa, a proportion that is much higher than expected by chance. In addition to these convergent changes, we observed many species-pair specific changes in gene expression indicating that different instances of adaptation to deserts include a combination of unique and shared changes. Patterns of protein evolution revealed a small number of genes showing evidence of positive selection, the majority of which did not show convergent changes in gene expression. Overall, our results suggest convergent changes in gene regulation play a primary role in the complex trait of desert adaptation in rodents.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kilian Toledo-Guedes ◽  
Alberto Brito ◽  
Carlos Garcia de Leaniz

The impact of fish escaping from fish farms may depend on the extent to which escapees adapt to the natural environment, resemble wild conspecifics, and become feral. Yet, little is known about the process of feralization in marine fish. We examined phenotypic changes in body shape, body condition, and scale growth profiles of sea bass escaping from fish farms in the Canary Islands and quantified the extent to which escapees had diverged from farmed conspecifics. Most feral sea bass had sizes that overlapped with those of farmed fish, indicating that they had escaped throughout the production cycle. However, 29% of escapees were larger than the maximum size at harvesting, indicating growth in the wild. Analysis of scale growth profiles showed that some escapees had grown in the wild as fast as cultured fish, albeit at more variable growth rates. Feral sea bass tended to converge towards a similar body shape, having more streamlined bodies, lower body condition, and lower hepatosomatic indices (HSI) than fish in cages. Although our study cannot discriminate between phenotypic plasticity and differential mortality of escapees, we interpret phenotypic convergence as the likely result of a period of initial starvation, phenotypic plasticity, and selection against maladapted phenotypes. Our results warn against the risks of rearing sea bass in open-net cages and suggest that sea bass escapees could pose a threat to shallow coastal assemblages, particularly in areas where the species is not naturally found.


Cell Research ◽  
2021 ◽  
Author(s):  
Dongming Xu ◽  
Cuiping Yang ◽  
Qiushuo Shen ◽  
Shengkai Pan ◽  
Zhen Liu ◽  
...  

2021 ◽  
Author(s):  
José-María Gomez ◽  
Adela Gonzalez-Megias ◽  
Eduardo Narbona ◽  
Luis Navarro ◽  
Francisco Perfectti ◽  
...  

Phenotypic convergence, the independent evolution of similar traits, is ubiquitous in nature, happening at all levels of biological organizations and in most kinds of living beings. Uncovering its mechanisms remains a fundamental goal in biology. Evolutionary theory considers that convergence emerges through independent genetic changes selected over long periods of time. We show in this study that convergence can also arise through phenotypic plasticity. We illustrate this idea by investigating how plasticity drives Moricandia arvensis, a mustard species displaying within-individual polyphenism in flowers, across the morphological space of the entire Brassicaceae family. By compiling the multidimensional floral phenotype, the phylogenetic relationships, and the pollination niche of over 3000 Brassicaceae species, we demonstrated that Moricandia arvensis exhibits a plastic-mediated within-individual floral disparity greater than that found not only between species but also between higher taxonomical levels such as genera and tribes. As a consequence of this divergence, M. arvensis moves outside the morphospace region occupied by its ancestors and close relatives, crosses into a new region where it encounters a different pollination niche and converges phenotypically with distant Brassicaceae lineages. Our study suggests that, by inducing phenotypes that explore simultaneously different regions of the morphological space, plasticity triggers rapid phenotypic convergence.


2021 ◽  
Author(s):  
Landen Gozashti ◽  
Russell Corbett-Detig ◽  
Scott W Roy

Reproductive proteins, including those expressed in the testes, are among the fastest evolving proteins across the tree of life. Sexual selection on traits involved in sperm competition is thought to be a primary driver of testes gene evolution and is expected to differ between promiscuous and monogamous species due to intense competition between males to fertilize females in promiscuous lineages and lack thereof in monogamous ones. Here, we employ the rodent genus Peromyscus as a model to explore differences in evolutionary rates between testis-expressed genes of monogamous and promiscuous species. We find candidate genes that may be associated with increased sperm production in promiscuous species and gene ontology categories that show patterns of molecular convergence associated with phenotypic convergence in independently evolved monogamous species. Overall, our results highlight possible molecular correlates of differences in mating system, which can be contextualized in light of expected selective pressures.


Sign in / Sign up

Export Citation Format

Share Document