ribbon tableaux
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2020 ◽  
Vol 11 (1) ◽  
pp. 169-202
Author(s):  
Ezgi Kantarcı Oğuz
Keyword(s):  


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
David B Rush

International audience A combinatorial expression for the coefficient of the Schur function $s_{\lambda}$ in the expansion of the plethysm $p_{n/d}^d \circ s_{\mu}$ is given for all $d$ dividing $n$ for the cases in which $n=2$ or $\lambda$ is rectangular. In these cases, the coefficient $\langle p_{n/d}^d \circ s_{\mu}, s_{\lambda} \rangle$ is shown to count, up to sign, the number of fixed points of an $\langle s_{\mu}^n, s_{\lambda} \rangle$-element set under the $d^e$ power of an order $n$ cyclic action. If $n=2$, the action is the Schützenberger involution on semistandard Young tableaux (also known as evacuation), and, if $\lambda$ is rectangular, the action is a certain power of Schützenberger and Shimozono's <i>jeu-de-taquin</i> promotion.This work extends results of Stembridge and Rhoades linking fixed points of the Schützenberger actions to ribbon tableaux enumeration. The conclusion for the case $n=2$ is equivalent to the domino tableaux rule of Carré and Leclerc for discriminating between the symmetric and antisymmetric parts of the square of a Schur function. Une expression combinatoire pour le coefficient de la fonction de Schur $s_{\lambda}$ dans l’expansion du pléthysme $p_{n/d}^d \circ s_{\mu}$ est donné pour tous $d$ que disent $n$, dans les cas où $n=2$, ou $\lambda$ est rectangulaire. Dans ces cas, le coefficient $\langle p_{n/d}^d \circ s_{\mu}, s_{\lambda} \rangle$ se montre à compter, où l’on ignore le signe, le nombre des point fixés d’un ensemble de $\langle s_{\mu}^n, s_{\lambda} \rangle$ éléments sous la puissance $d^e$ d’une action cyclique de l’ordre $n$. Si $n=2$, l’action est l’involution de Schützenberger sur les tableaux semi-standard de Young (aussi connu sous le nom des évacuations), et si $\lambda$ est rectangulaire, l’action est une certaine puissance de l’avancement jeu-de-taquin de Schützenberger et Shimozono.Ce travail étend les résultats de Stembridge et Rhoades, liant les point fixés des actions de Schützenberger aux tableaux de ruban. Pour le cas $n=2$ , la conclusion est équivalent à la règle des tableaux de dominos de Carré et Leclerc, qui distingue entre les parties symétriques et asymétriques du carré d’une fonction de Schur.





2011 ◽  
Vol 36 (1) ◽  
pp. 67-102 ◽  
Author(s):  
Dominique Gouyou-Beauchamps ◽  
Philippe Nadeau
Keyword(s):  


2007 ◽  
Vol Vol. 9 no. 2 ◽  
Author(s):  
Francois Descouens

arXiv:math.CO/0611824 International audience We describe a general algorithm for generating various families of ribbon tableaux and computing their spin polynomials. This algorithm is derived from a new matricial coding. An advantage of this new notation lies in the fact that it permits one to generate ribbon tableaux with skew shapes.



2005 ◽  
Vol 9 (3) ◽  
pp. 293-300
Author(s):  
Thomas Lam
Keyword(s):  


2005 ◽  
Vol 250 (3) ◽  
pp. 685-710 ◽  
Author(s):  
Thomas Lam


10.37236/1907 ◽  
2005 ◽  
Vol 12 (1) ◽  
Author(s):  
Marc A. A. Van Leeuwen

The RSK correspondence generalises the Robinson-Schensted correspondence by replacing permutation matrices by matrices with entries in ${\bf N}$, and standard Young tableaux by semistandard ones. For $r\in{\bf N}_{>0}$, the Robinson-Schensted correspondence can be trivially extended, using the $r$-quotient map, to one between $r$-coloured permutations and pairs of standard $r$-ribbon tableaux built on a fixed $r$-core (the Stanton-White correspondence). Viewing $r$-coloured permutations as matrices with entries in ${\bf N}^r$ (the non-zero entries being unit vectors), this correspondence can also be generalised to arbitrary matrices with entries in ${\bf N}^r$ and pairs of semistandard $r$-ribbon tableaux built on a fixed $r$-core; the generalisation is derived from the RSK correspondence, again using the $r$-quotient map. Shimozono and White recently defined a more interesting generalisation of the Robinson-Schensted correspondence to $r$-coloured permutations and standard $r$-ribbon tableaux; unlike the Stanton-White correspondence, it respects the spin statistic on standard $r$-ribbon tableaux, relating it directly to the colours of the $r$-coloured permutation. We define a construction establishing a bijective correspondence between general matrices with entries in ${\bf N}^r$ and pairs of semistandard $r$-ribbon tableaux built on a fixed $r$-core, which respects the spin statistic on those tableaux in a similar manner, relating it directly to the matrix entries. We also define a similar generalisation of the asymmetric RSK correspondence, in which case the matrix entries are taken from $\{0,1\}^r$. More surprising than the existence of such a correspondence is the fact that these Knuth correspondences are not derived from Schensted correspondences by means of standardisation. That method does not work for general $r$-ribbon tableaux, since for $r\geq3$, no $r$-ribbon Schensted insertion can preserve standardisations of horizontal strips. Instead, we use the analysis of Knuth correspondences by Fomin to focus on the correspondence at the level of a single matrix entry and one pair of ribbon strips, which we call a shape datum. We define such a shape datum by a non-trivial generalisation of the idea underlying the Shimozono-White correspondence, which takes the form of an algorithm traversing the edge sequences of the shapes involved. As a result of the particular way in which this traversal has to be set up, our construction directly generalises neither the Shimozono-White correspondence nor the RSK correspondence: it specialises to the transpose of the former, and to the variation of the latter called the Burge correspondence. In terms of generating series, our shape datum proves a commutation relation between operators that add and remove horizontal $r$-ribbon strips; it is equivalent to a commutation relation for certain operators acting on a $q$-deformed Fock space, obtained by Kashiwara, Miwa and Stern. It implies the identity $$\sum_{\lambda\geq_r(0)}G^{(r)}_\lambda(q^{1\over2},X) G^{(r)}_\lambda(q^{1\over2},Y) =\prod_{i,j\in{\bf N}}\prod_{k=0}^{r-1}{1\over1-q^kX_iY_j}; $$ where $G^{(r)}_\lambda(q^{1\over2},X)\in{\bf Z}[q^{1\over2}][[X]]$ is the generating series by $q^{{\rm spin}(P)}X^{{\rm wt}(P)}$ of semistandard $r$-ribbon tableaux $P$ of shape $\lambda$; the identity is a $q$-analogue of an $r$-fold Cauchy identity, since the series factors into a product of $r$ Schur functions at $q^{1\over2}=1$. Our asymmetric correspondence similarly proves $$\sum_{\lambda\geq_r(0)}G^{(r)}_\lambda(q^{1\over2},X) \check G^{(r)}_\lambda(q^{1\over2},Y) =\prod_{i,j\in{\bf N}}\prod_{k=0}^{r-1}(1+q^kX_iY_j). $$ with $\check G^{(r)}_\lambda(q^{1\over2},X)$ the generating series by $q^{{\rm spin}^{\rm t}(P)}X^{{\rm wt}(P)}$ of transpose semistandard $r$-ribbon tableaux $P$, where ${\rm spin}^{\rm t}(P)$ denotes the spin as defined using the standardisation appropriate for such tableaux.



Sign in / Sign up

Export Citation Format

Share Document