scholarly journals Experimental Study and Direct Strength Method for Cold-Formed Steel Built-Up I-Sectional Columns under Axial Compression

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Xingyou Yao

The objective of this paper is to investigate the buckling behavior and design method of the ultimate strength for the cold-formed steel (CFS) built-up I-sectional columns under axial compression which failed in distortional buckling and interactive buckling. A total of 56 CFS built-up I-sectional columns subjected to axial compression were tested, and the different buckling modes and ultimate strengths were analyzed in detail by varying the thickness, the length, the spacing of screws, the end fastener group, and the cross-sectional dimensions of CFS built-up I-sectional columns. It was shown in the test that noticeable interaction of local and distortional buckling or interaction of local, distortional, and global buckling was observed for the built-up I-sectional columns with different lengths and cross-sectional dimensions. A finite element model (FEM) was developed and validated with experimental results. A further parametric study has been conducted including different cross sections and slenderness ratios for the built-up I-sectional columns. The load-carrying capacities obtained from the experimental and numerical study were used to investigate the feasibility of the current direct strength method (DSM) when DSM was applied to CFS built-up I-sectional columns. The comparison results showed that the current DSM is not safe for CFS built-up columns failed in distortional buckling and interactive buckling. Therefore, the improved design formulas were proposed, and their accuracy was verified by using finite element analysis (FEA) and experimental results of CFS built-up I-sectional columns subjected to axial compression.

2018 ◽  
Vol 22 (3) ◽  
pp. 613-625 ◽  
Author(s):  
M Anbarasu ◽  
M Venkatesan

This work reports numerical results concerning the cold-formed steel built-up I-section columns composed of four U-profiles under axial compression. A finite element model is developed by using the software program ABAQUS. The developed model includes geometric, material nonlinearities and geometric imperfections. The finite element model was verified against the experimental results reported in the cold-formed steel built-up open section columns. In the parametric study, the sections are analysed with several cross-sectional dimension ratios and lengths, in order to assess their influence on the buckling behaviour and ultimate strength of cold-formed steel built-up I-section columns. After presenting and discussing the numerical parametric results, the article shows that the current direct strength method in the North American Specification for cold-formed steel compression members design curve fails to predict adequately the ultimate strength of some of the columns analysed and addresses the modification proposed on current direct strength method curves, providing improved predictions of all the numerical ultimate strength available. The proposed method is also assessed by reliability analysis.


2010 ◽  
Vol 163-167 ◽  
pp. 651-654
Author(s):  
Tian Hua Zhou ◽  
Shao Feng Nie ◽  
Xiang Bin Liu ◽  
Guang Yi Li

18 specimens of cold-formed steel three limbs built-up section members are tested under axial compression load in this paper. The section forms are divided into two categories: A and B. Load-displacement (P-Δ) curves and failure characteristics of specimens are obtained. The results show that: As to section A members, the failure characteristics of LC, MC and SC series of specimens are flexural-torsional buckling, torsional buckling and distortional buckling, local buckling and distortional buckling. As to section B members, the failure characteristics of LC, MC series of specimens are flexural buckling, while local buckling and distortional buckling for members of SC series.


2017 ◽  
Vol 11 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Xingyou Yao

Background: Cold-formed steel structural sections used in the walls of residential buildings and agricultural facilities are commonly C-shaped sections with web holes. These holes located in the web of sections can alter the elastic stiffness and the ultimate strength of a structural member. The objective of this paper is to study the buckling mode and load-carrying capacity of cold-formed thin-walled steel column with slotted web holes. Methods: Compression tests were conducted on 26 intermediate length columns with and without holes. The tested compressive members included four different kinds of holes. For each specimen, a shell finite element Eigen-buckling analysis and nonlinear analysis were also conducted. The influence of the slotted web hole on local and distortional buckling response had also been studied. The comparison on ultimate strength between test results and calculated results using Chinese cold-formed steel specification GB50018-2002, North American cold-formed steel specification AISI S100-2016, and nonlinear Finite Element method was made. Result: Test results showed that the distortional buckling occurred for intermediate columns with slotted holes and the ultimate strength of columns with holes was less than that of columns without holes. The ultimate strength of columns decreased with the increase in transverse width of hole in the cross-section of member. The Finite element analysis results showed that the web holes could influence on the elastic buckling stress of columns. The shell finite element could be used to model the buckling modes and analysis the ultimate strength of members with slotted web holes. The calculated ultimate strength shows that results predicted with AISI S100-2016 and analyzed using finite element method are close to test results. The calculated results using Chinese code are higher than the test results because Chinese code has no provision to calculate the ultimate strength of members with slotted web holes. Conclusion: The calculated method for cold-formed thin-walled steel columns with slotted web holes are proposed based on effective width method in Chinese code. The results calculated using the proposed method show good agreement with test results and can be used in engineering design for some specific cold-formed steel columns with slotted web holes studied in this paper.


Author(s):  
Bernardo A. Lejano

<p>Getting good lumber for housing construction is becoming difficult in the Philippines due to existing partial log ban. Although, the use of reinforced concrete is still the most popular in construction, an emerging alternative is the use of cold-formed steel (CFS). It is gaining popularity because of its high strength-to- weight ratio. However, information about the structural performance of locally-produced cold-formed steel is almost nonexistent. Although, design provisions are stipulated in the local Code, these are based on formulas developed abroad, hence the need to investigate these cold-formed steel. This study focuses on the C-section cold-formed steel, which is the most popularly used. The objective is to verify its performance when subjected to axial compression and flexure, both experimentally and computationally. For the computational part, the formulas stipulated in the National Structural Code of the Philippines were followed. For the experimental part, the cold-formed steel members were subjected to compression loads and flexural loads. Aside from usual sensors, high-speed cameras were used to capture the failure modes. For axial compression test, 80 specimens with different lengths and thicknesses were tested. For flexure, 24 specimens of back-to-back C-sections were subjected to 4-point bending test. Results showed the predicted strengths were well below the experimental values. In design, this means the use of Code-based formulas is conservative. Failure modes observed were torsional buckling and distortional buckling. Comparison of failure modes between experiment and computation shows 70% agreement for compression and 75% for flexure. Finite element method calculations were also done and were compared with experimental results.</p>


2018 ◽  
Vol 45 (8) ◽  
pp. 605-622 ◽  
Author(s):  
M.S. Deepak ◽  
V.M. Shanthi

This paper compiles the experimental and finite-element parametric study on member distortional buckling behaviour of new built-up metal hybrid double-I-box beams (HDIBBs). The cross-section of this built-up beam is unique and looks similar to the shape of a double-I-box fabricated using four channel sections. The flange plates were provided with an intermediate stiffener. In these built-up beams there is more material in the flange portions far away from the horizontal centroidal axis of their cross-section. Hence, there is an increase in the flexural rigidity that enhances the moment capacity of the beam, under major axis bending. The geometry consists of torsionally rigid closed-box web portion that provides high resistance to minor axis lateral-buckling. The varying parameters considered were the ratio of yield stresses of the flange to the web steel plates, the ratio of breadth to the depth of the section, and the flange plate thickness. In the experimental programme, all the HDIBB members failed due to kinds of distortional buckling which was identified by web buckling and flange twist along edges. The results revealed that when flange plate slenderness increases there is a drop in the moment resistance capacity of the beams. The numerical study was performed using ABAQUS software. In comparison, there was good agreement between experimental and numerical results. The validated finite element models were further extended to perform parametric studies on ideal HDIBB models. Both the experimental and parametric study results were compared with the predicted strengths using effective width method equations specified in the Euro code standards EN 3-1-3. It was found that the current Euro code design rules slightly over-estimate the distortional buckling resistance capacity of closed form built-up cold-formed steel members. A new design equation was formulated and recommended for estimating the reduction in distortional buckling moment resistance capacity for HDIBBs.


2020 ◽  
Vol 23 (10) ◽  
pp. 2174-2187
Author(s):  
Liang Zheng ◽  
Cheng Qin ◽  
Hong Guo ◽  
Dapeng Zhang ◽  
Mingtan Zhou ◽  
...  

In this article, a new type of reticulated joint, named the steel–concrete composite reticulated shell joint, is proposed. The proposed reticulated shell joint consists of an inner circular steel pipe, an outer circular steel pipe, a steel cover plate, and internal concrete. Five test specimens were tested under axial compression. The variable study included the wall thickness of the inner and outer circular steel pipes and the radius of the inner circular steel pipe. The test specimens exhibited a high bearing capacity and good plastic deformation ability under axial compression. The test results show that the wall thickness of the outer circular steel pipe and the radius of the inner circular steel pipe have a great influence on the bearing capacity of the steel–concrete composite reticulated shell joint, while the wall thickness of the inner circular steel pipe has little influence on the bearing capacity of the steel–concrete composite reticulated shell joint. Based on the test of the steel–concrete composite reticulated shell joints under axial load, the three-dimensional nonlinear finite element model was used to analyze the mechanical properties of the steel–concrete composite reticulated shell joints under axial compression. The results of the finite element analysis showed good agreement with the experimental results. The formula for calculating the bearing capacity of the joint is derived. By comparing with the experimental results, the calculated results are basically consistent with the experimental results.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
George E. Varelis ◽  
Spyros A. Karamanos

The present paper examines the structural behavior of elongated steel hollow cylinders, referred to as tubes or pipes, subjected to large cyclic bending, through a rigorous finite element simulation. The bent cylinders exhibit cross-sectional distortion, in the form of ovalization, combined with excessive plastic deformations. Those deformations grow under repeated loading and may lead to structural instability in the form of local buckling (wrinkling) and, eventually, failure of the loaded member. The study focuses on relatively thick-walled seamless cylindrical members made of high-strength steel, which exhibit local buckling in the plastic range of the steel material. The analysis is conducted using advanced nonlinear finite element models capable of describing both geometrical and material nonlinearities. A cyclic plasticity model that adopts the “bounding surface” concept is employed. The material model is calibrated through special-purpose material testing, and implemented within ABAQUS, using a user-subroutine. The finite element model is validated by comparison with two experiments on high-strength steel tubular members. Special emphasis is given on the increase of ovalization and the gradual development of small-amplitude initial wrinkles with repeated loading cycles. A parametric numerical study is conducted, aimed at determining the effects of initial wrinkles on plastic buckling performance.


2013 ◽  
Vol 671-674 ◽  
pp. 461-464
Author(s):  
Chun Gang Wang ◽  
Run Jia Liang ◽  
Lian Guang Jia ◽  
Hong Liu

This paper presents an experimental investigation and a numerical analysis on the bending strength and behavior of cold-formed steel C-section and ∑-section beams with complex edge stiffeners and web holes. Local buckling, distortional buckling and interaction between local and distortional buckling were observed in the tests. The experimental results show that the stiffened web has great influence on member's bending strength. Compared with C-section specimens, the stiffness of the web stiffeners of ∑-section specimens reduced the influence of the holes. The finite element analysis results show good agreement with the experimental results in terms of bending strength and buckling mode.


Sign in / Sign up

Export Citation Format

Share Document