mock modular form
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Taylor Garnowski

AbstractKim et al. (Proc Am Math Soc 144:687–3700, 2016) introduced the notion of odd-balance unimodal sequences in 2016. Like was shown by Bryson et al. (Proc Natl Acad Sci USA 109:16063–16067, 2012) for the generating function of strongly unimodal sequences, the generating function for odd-balanced unimodal sequences also has quantum modular behavior. Odd-balanced unimodal sequences thus appear to be a fundamental piece in the world of modular forms and combinatorics, and understanding their asymptotic properties is important for understanding their place in this puzzle. In light of this, we compute an asymptotic estimate for odd balanced unimodal sequences for ranks congruent to $$a \pmod {c}$$ a ( mod c ) for $$c\ne 2$$ c ≠ 2 or a multiple of 4. We find the interesting result that the odd balanced unimodal sequences are asymptotically related to the overpartition function. This is in contrast to strongly unimodal sequences which, are asymptotically related to the partition function. Our proofs of the main theorems rely on the representation of the generating function in question as a mixed mock modular form.


2019 ◽  
Vol 7 ◽  
Author(s):  
DANIEL M. KANE ◽  
ROBERT C. RHOADES

Our main result establishes Andrews’ conjecture for the asymptotic of the generating function for the number of integer partitions of$n$without$k$consecutive parts. The methods we develop are applicable in obtaining asymptotics for stochastic processes that avoid patterns; as a result they yield asymptotics for the number of partitions that avoid patterns.Holroyd, Liggett, and Romik, in connection with certain bootstrap percolation models, introduced the study of partitions without$k$consecutive parts. Andrews showed that when$k=2$, the generating function for these partitions is a mixed-mock modular form and, thus, has modularity properties which can be utilized in the study of this generating function. For$k>2$, the asymptotic properties of the generating functions have proved more difficult to obtain. Using$q$-series identities and the$k=2$case as evidence, Andrews stated a conjecture for the asymptotic behavior. Extensive computational evidence for the conjecture in the case$k=3$was given by Zagier.This paper improved upon early approaches to this problem by identifying and overcoming two sources of error. Since the writing of this paper, a more precise asymptotic result was established by Bringmann, Kane, Parry, and Rhoades. That approach uses very different methods.


2017 ◽  
Vol 26 (12) ◽  
pp. 1742003 ◽  
Author(s):  
Shamit Kachru ◽  
Arnav Tripathy

We define a natural counting function for BPS black holes in [Formula: see text] compactification of type II string theory, and observe that it is given by a weight 3/2 mock modular form discovered by Zagier. This hints at tantalizing relations connecting black holes, string theory, and number theory.


10.37236/5248 ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Kathrin Bringmann ◽  
Jehanne Dousse ◽  
Jeremy Lovejoy ◽  
Karl Mahlburg

We use $q$-difference equations to compute a two-variable $q$-hypergeometric generating function for overpartitions where the difference between two successive parts may be odd only if the larger part is overlined. This generating function specializes in one case to a modular form, and in another to a mixed mock modular form. We also establish a two-variable generating function for the same overpartitions with odd smallest part, and again find modular and mixed mock modular specializations. Applications include linear congruences arising from eigenforms for $3$-adic Hecke operators, as well as asymptotic formulas for the enumeration functions. The latter are proven using Wright's variation of the circle method.


Sign in / Sign up

Export Citation Format

Share Document