statistical prediction model
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 0)

MAUSAM ◽  
2021 ◽  
Vol 51 (3) ◽  
pp. 261-268
Author(s):  
H. P. DAS ◽  
S. B. GAONKAR

The present study investigates the effect of the climatic environment on three different varieties of paddy. Crop coefficient in different stages of growth, the consumptive uses and radiation use efficiency has been determined and discussed in each case. Ideal date which could give optimum yield, has been determined in two varieties. The yield was correlated with weather parameters for each of the phases of the crop growth by forward ranking method and a statistical prediction model developed. Path analysis was applied to the predictors thus selected and direct and indirect contribution of the predictors to yield determined and discussed.


2021 ◽  
Vol 27 ◽  
Author(s):  
Jia-shan Pan ◽  
Yi-ding Chen ◽  
Han-dong Ding ◽  
Tian-chi Lan ◽  
Fei Zhang ◽  
...  

2021 ◽  
Vol 21 (7) ◽  
pp. 2215-2231
Author(s):  
Colin Keating ◽  
Donghoon Lee ◽  
Juan Bazo ◽  
Paul Block

Abstract. Disaster planning has historically allocated minimal effort and finances toward advanced preparedness; however, evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the availability of high-quality forecasts to inform decision making. In this study, we evaluate the ability of statistical and physically based season-ahead prediction models to appropriately trigger flood early preparedness actions based on a 75 % or greater probability of surpassing the 80th percentile of historical seasonal streamflow for the flood-prone Marañón River and Piura River in Peru. The statistical prediction model, developed in this work, leverages the asymmetric relationship between seasonal streamflow and the ENSO phenomenon. Additionally, a multi-model (least-squares combination) is also evaluated against current operational practices. The statistical prediction demonstrates superior performance compared to the physically based model for the Marañón River by correctly triggering preparedness actions in three out of four historical occasions, while both the statistical and multi-model predictions capture all four historical events when the required threshold exceedance probability is reduced to 50 %, with only one false alarm. For the Piura River, the statistical model proves superior to all other approaches, correctly triggering 28 % more often in the hindcast period. Continued efforts should focus on applying this season-ahead prediction framework to additional flood-prone locations where early actions may be warranted and current forecast capacity is limited.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1375
Author(s):  
Adam Rus Nugroho ◽  
Ichiro Tamagawa ◽  
Morihiro Harada

Predicting the streamflow regimes using climate dynamics is important in water resource management. However, in Indonesia, there are few studies targeting climate indices and streamflow. A previous study found difficulty in developing a statistical prediction model for this relationship due to its non-linear nature. This study attempted to address that gap by applying multiple regression (MR) models using second- and third-order polynomial functions to show the non-linear relationship between climate and flow regime indices. First, a correlation analysis was performed to check the variable relationships. There was a good and significant correlation of El Niño Southern Oscillation (ENSO) with the flow regime indices. Secondly, MR models were developed with the same-time variables. The developed model showed that the Indian Ocean Dipole (IOD) had the effect of strongly increasing the high flow in La Niña phases. Finally, time-lagged MRs were developed aiming at forecasting. Lagged MR models with six-month leading climate indices demonstrated a relatively good correlation with the observed data (mostly R > 0.700) with moderate accuracy (root mean square error = 44–51%). It suggests that the forecasting of flow regime may be possible using ENSO and IOD indices.


2021 ◽  
Author(s):  
Colin Keating ◽  
Donghoon Lee ◽  
Juan Bazo ◽  
Paul Block

Abstract. Disaster planning has historically allocated minimal effort and finances toward advanced preparedness, however evidence supports reduced vulnerability to flood events, saving lives and money, through appropriate early actions. Among other requirements, effective early action systems necessitate the availability of high-quality forecasts to inform decision making. In this study, we evaluate the ability of statistical and physically based season-ahead prediction models to appropriately trigger flood early preparedness actions based on a 75 % or greater probability of surpassing the 80th percentile of historical seasonal streamflow for the flood-prone Marañón River and Piura River in Peru. The statistical prediction model, developed in this work, leverages the asymmetric relationship between seasonal streamflow and the ENSO phenomenon. Additionally, a multi-model (least squares combination) is also evaluated against current operational practices. The statistical and multi-model predictions demonstrate superior performance compared to the physically based model for the Marañón River by correctly triggering preparedness actions in all four historical occasions. For the Piura River, the statistical model proves superior to all other approaches, and even achieves an 86 % hit rate when the required threshold exceedance probability is reduced to 50 %, with only one false alarm. Continued efforts should focus on applying this season-ahead prediction framework to additional flood-prone locations where early actions may be warranted and current forecast capacity is limited.


2021 ◽  
Vol 30 ◽  
pp. 559-571
Author(s):  
Woojae Kim ◽  
Sanghoon Lee ◽  
Alan Conrad Bovik

2020 ◽  
Author(s):  
Liang Shi ◽  
Ruiqiang Ding ◽  
Yu-heng Tseng

<p>The skills of most ENSO prediction models have declined significantly since 2000. This decline may be due to a weakening of the correlation between tropical predictors and ENSO. Moreover, the effects of extratropical ocean variability on ENSO have increased during this period. To improve ENSO predictability, we investigate the influence of the tropical-extratropical Atlantic and Pacific sea surface temperature(SST) on ENSO during the periods of pre-2000 and post-2000. We find that the influence of the northern tropical Atlantic(NTA) SST on ENSO has significantly increase since 2000. Meanwhile, there is a much earlier and stronger SST responses between NTA SST and ENSO over the central-eastern Pacific during June–July–August in the post-2000 period compared with the pre-2000 period. Furthermore, the extratropical Pacific SST predictors for ENSO still retain a ~10-month lead time after 2000. We use SST signals in the extratropical Atlantic and Pacific to predict ENSO using a statistical prediction model. These results reveal a significant improvement in ENSO prediction skills. These results indicate that the Atlantic and Pacific SSTAs can make substantial contributions to ENSO prediction, and can be further used to enhance ENSO predictability after 2000.</p>


Sign in / Sign up

Export Citation Format

Share Document