mean heart dose
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 34)

H-INDEX

8
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Junichi Fukada ◽  
Kyohei Fukata ◽  
Naoyoshi Koike ◽  
Ryuichi Kota ◽  
Naoyuki Shigematsu

AbstractWe investigated the normal tissue complication probability (NTCP) of the incidence of pericardial effusion (PCE) based on the mean heart dose (MHD) in patients with oesophageal cancer treated with definitive chemoradiotherapy. The incidences of PCE in any grade (A-PCE) and symptomatic PCE (S-PCE) were evaluated separately. To identify predictors for PCE, several clinical and dose-volume parameters were analysed using a receiver operating characteristic (ROC) curve and multivariate regression analysis. To validate its clinical applicability, the generated NTCP model was compared to the Lyman–Kutcher–Burman (LKB) model. Among 229 eligible patients, A-PCE and S-PCE were observed in 100 (43.7%) and 18 (7.9%) patients, respectively. MHD showed a preferable area under the curve (AUC) value for S-PCE (AUC = 0.821) and A-PCE (AUC = 0.734). MHD was the only significant predictor for A-PCE; MHD and hypertension were selected as significant factors for S-PCE. The estimated NTCP, using the MHD-based model, showed excellent correspondence to the LKB model in A-PCE and S-PCE. The NTCP curve of A-PCE was gentler than that of S-PCE and had no threshold. The MHD-based NTCP model was simple but comparable to the LKB model for both A-PCE and S-PCE. Therefore, the estimated NTCP may provide clinically useful parameters for predicting PCE.


2021 ◽  
Vol 161 ◽  
pp. S981
Author(s):  
E. Ćirić ◽  
S. Jelerčič ◽  
M. Vrankar ◽  
J. But Hadžić ◽  
K. Stanič ◽  
...  

2021 ◽  
Vol 161 ◽  
pp. S894
Author(s):  
R. Moujahed ◽  
M. Ben Rejeb ◽  
S. Ghorbel ◽  
A. Hamdoun ◽  
Z. Naimi ◽  
...  

2021 ◽  
Vol 161 ◽  
pp. S443-S444
Author(s):  
M.L. Milo ◽  
D.S. Møller ◽  
T.B. Nyeng ◽  
L. Hoffmann ◽  
I. Jensen ◽  
...  

2021 ◽  
Author(s):  
Zhe Zhang ◽  
Daming Li ◽  
Feng Peng ◽  
ZhiBo Tan ◽  
PengFei Yang ◽  
...  

Abstract For patients with left-sided breast cancer (LBC), postmastectomy radiotherapy (PMRT) has been shown to improve the overall survival and many advanced planning techniques was adopted in PMRT. We aim to use an innovative VMAT technique to enhance the conformity of PTV and reduce the scattering dose of surrounding OARs, thereby reducing the long-term toxicity of the heart as well as ipsilateral lung (IL). The study further analyzes the more appropriate treatment planning techniques for personalized LBC patients with PMRT. 35 LBC patients were retrospectively selected undergoing PMRT. The PTV included lymph nodes, chest walls, excluding internal mammary nodes, where 95% of PTV receiving the prescription dose of 50Gy (2Gy/fraction) with three different techniques, VMAT, IMRT, Hybrid VMAT. Furthermore, the ratio of Heart Volume in Tangent line and heart volume (RHVTL) was proposed to evaluate the relative antonymy position between patient's heart and PTV, which hypothetically represents the complexity of treatment planning. The data from this study showed that for LBC patients undergoing PMRT, the CI from VMAT was 0.85 (IMRT and H-VMAT were 0.77 and 0.83), the heart D mean was 502.9cGy (IMRT and H-VMAT were 675.6cGy and 687cGy) and the V20 of IL was 21.3 as the lowest of the three techniques, but the dose of the contralateral breast (CB) and contralateral lung increased noticeably. In H-VMAT and IMRT, the mean heart dose was significantly related to RHVTL, with R-values of 0.911 and 0.892 respectively, while the values in VMAT was 0.613, thus the VMAT technique was relatively unaffected by the difficulty of treatment plan. For RHVTL values exceed than 0.06, the mean heart dose under VMAT technique raised by 98.7cGy compared to the RHVTL value of less than 0.06, but H-VMAT and IMRT increased by 233cGy and 261.58cGy individually. This study illustrates that separated fields and adjacent fields in VMAT technique obtained the optimal conformality and lowest doses of heart in three techniques for LBC with PMRT. Thus, based on the results of our preliminary study, the VMAT technique is highly recommended when RHVTL is exceeded 0.06.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e20525-e20525
Author(s):  
Anna Mary Brown Laucis ◽  
Kimberly A. Hochstedler ◽  
Thomas Pence Boike ◽  
Benjamin Movsas ◽  
Craig William Stevens ◽  
...  

e20525 Background: Treatment for inoperable stage II-III non-small cell lung cancer (NSCLC) involves aggressive chemo-radiotherapy (CRT). While outcomes have improved with immunotherapy, some patients transition to hospice or die early in their treatment course. To help identify these patients, we developed a predictive model for early poor outcomes in NSCLC patients treated with curative intent. Methods: In a statewide consortium involving 27 sites, information was collected prospectively on stage II-III NSCLC patients who received curative CRT from April 2012 to November 2019. We defined an early poor outcome as termination of treatment due to hospice enrollment or death within 5 months of initiating radiation therapy. Potential predictors included clinical characteristics and patient reported outcomes (PROs) from validated questionnaires. Logistic regression models were used to assess potential predictors and build predictive models. Multiple imputation was used to handle missing data. We used Lasso regularized logistic regression to build a predictive model with multiple predictor variables. Results: Of the total of 2267 included patients, 128 patients discontinued treatment early due to hospice enrollment or death. The mean age of the 128 patients was 71 years old (range 48-91) and 59% received concurrent chemotherapy. Significant uni-variable predictors of early hospice or death were advanced age, worse ECOG performance status, high PTV volume, short distance to normal tissue critical structures, high mean heart dose, uninsured status, lower scores on the Functional and Physical Well-Being scale and the Lung Cancer Symptoms sub-scale of the FACT-L quality of life instrument, as well as higher levels of patient-reported lack of energy, cough, and shortness of breath. The best predictive model included age, ECOG performance status, PTV volume, mean heart dose, patient insurance status, and patient-reported lack of energy and cough. The pooled estimate of area under the curve (AUC) for this multivariable model was 0.71, with a negative predictive value of 95%, specificity of 97%, positive predictive value of 23%, and sensitivity of 16% at a predicted risk threshold of 20%. Conclusions: Our models identified a combination of clinical variables and PROs that may help identify individuals with inoperable NSCLC undergoing curative intent chemo-radiotherapy who are at a high risk of early hospice enrollment or death. These preliminary results are encouraging and warrant further evaluation in a larger cohort of patients.


2021 ◽  
Author(s):  
Junichi Fukada ◽  
Kyohei Fukata ◽  
Naoyoshi Koike ◽  
Ryuichi Kota ◽  
Naoyuki Shigematsu

Abstract We investigated the normal tissue complication probability (NTCP) of the incidence of pericardial effusion (PCE) based on the mean heart dose (MHD). We reviewed medical records of oesophageal cancer patients treated with definitive chemoradiotherapy. Incidences of PCE in any grade (A-PCE) and symptomatic PCE (S-PCE) were evaluated separately. To identify significant predictors for PCE, clinical and dose-volume parameters were analysed using a receiver operating characteristic (ROC) curve and multivariate regression analysis. The generated NTCP model was compared to the Lyman–Kutcher–Burman (LKB) model to validate its clinical applicability. Among 229 eligible patients, A-PCE and S-PCE were observed in 100 (43.7%) and 18 (7.9%) patients, respectively. MHD showed a preferable area under the curve (AUC) value for S-PCE (AUC = 0.821) and A-PCE (AUC = 0.734). MHD was the only significant predictor for A-PCE; MHD and hypertension were selected as significant factors for S-PCE. The estimated NTCP, using the MHD-based model, showed excellent correspondence to the LKB model in A-PCE and S-PCE. The NTCP curve of A-PCE was gentler than that of S-PCE and had no threshold. The MHD-based NTCP model was simple but comparable to the LKB model for both A-PCE and S-PCE. Estimated NTCP may provide clinically useful parameters for predicting PCE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kuan-Heng Lin ◽  
Chen-Xiong Hsu ◽  
Shan-Ying Wang ◽  
Greta S. P. Mok ◽  
Chiu-Han Chang ◽  
...  

AbstractThis study aims to develop a volume-based algorithm (VBA) that can rapidly optimize rotating gantry arc angles and predict the lung V5 preceding the treatment planning. This phantom study was performed in the dynamic arc therapy planning systems for an esophageal cancer model. The angle of rotation of the gantry around the isocenter as defined as arc angle (θA), ranging from 360° to 80° with an interval of 20°, resulting in 15 different θA of treatment plans. The corresponding predicted lung V5 was calculated by the VBA, the mean lung dose, lung V5, lung V20, mean heart dose, heart V30, the spinal cord maximum dose and conformity index were assessed from dose–volume histogram in the treatment plan. Correlations between the predicted lung V5 and the dosimetric indices were evaluated using Pearson’s correlation coefficient. The results showed that the predicted lung V5 and the lung V5 in the treatment plan were positively correlated (r = 0.996, p < 0.001). As the θA decreased, lung V5, lung V20, and the mean lung dose decreased while the mean heart dose, V30 and the spinal cord maximum dose increased. The V20 and the mean lung dose also showed high correlations with the predicted lung V5 (r = 0.974, 0.999, p < 0.001). This study successfully developed an efficient VBA to rapidly calculate the θA to predict the lung V5 and reduce the lung dose, with potentials to improve the current clinical practice of dynamic arc radiotherapy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Michał Falco ◽  
Bartłomiej Masojć ◽  
Agnieszka Macała ◽  
Magdalena Łukowiak ◽  
Piotr Woźniak ◽  
...  

Abstract Background Patients with left breast cancer who undergo radiotherapy have a non-negligible risk of developing radiation-induced cardiovascular disease (CVD). Cardioprotection can be achieved through better treatment planning protocols and through respiratory gating techniques, including deep inspiration breath hold (DIBH). Several dosimetric studies have shown that DIBH reduces the cardiac dose, but clinical data confirming this effect is limited. The aim of the study was to compare the mean heart dose (MHD) in patients with left breast cancer who underwent radiotherapy at our institution as we transitioned from non-gated free-breathing (FB) radiotherapy to gated radiotherapy (FB-GRT), and finally to DIBH. Patients and methods Retrospective study involving 2022 breast cancer patients who underwent radiotherapy at West Pomeranian Oncology Center in Szczecin from January 1, 2014 through December 31, 2017. We compared the MHD in these patients according to year of treatment and technique. Results Overall, the MHD for patients with left breast cancer in our cohort was 3.37 Gy. MHD values in the patients treated with DIBH were significantly lower than in patients treated with non-gated FB (2.1 vs. 3.48 Gy, p < 0.0001) and gated FB (3.28 Gy, p < 0.0001). The lowest MHD values over the four-year period were observed in 2017, when nearly 85% of left breast cancer patients were treated with DIBH. The proportion of patients exposed to high (> 4 Gy) MHD values decreased every year, from 40% in 2014 to 7.9% in 2017, while the percentage of patients receiving DIBH increased. Conclusions Compared to free-breathing techniques (both gated and non-gated), DIBH reduces the mean radiation dose to the heart in patients with left breast cancer. These findings support the use of DIBH in patients with left breast cancer treated with radiotherapy.


Sign in / Sign up

Export Citation Format

Share Document