power turbine
Recently Published Documents


TOTAL DOCUMENTS

394
(FIVE YEARS 65)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
pp. 1-38
Author(s):  
Kenji Miki ◽  
Ali Ameri

Abstract There is a need to improve predictions of losses resulting from large eddy simulations (LES) of low-pressure turbines (LPT) in gas turbines. This may be done by assessing the accuracy of predictions against validation data and understanding the source of any inaccuracies. LES is a promising approach for capturing the laminar/turbulent transition process in a LPT. In previous studies, the authors utilized LES to model the flow field over a Variable Speed Power Turbine (VSPT) blade and successfully captured characteristic features of separation/reattachment and transition on the suction side at both the cruise (positive incidence) and take-off conditions (negative incidence) and as well, simulated the effect of freestream turbulence (FST) on those phenomena. The predicted pressure loading profiles agreed well with the experimental data for both a high and a low FST case at a Reynolds number of Reex = 220,000. In this paper, we present wake profiles resulting from computations for a range of FST values. Although the predicted wake profiles for the lowest FST case (Tu = 0.5%) matched the experimental data, at higher FST (Tu = 10-15%,) the wake was wider than the experimentally measured wake and for both cases were displaced laterally when compared to the experimental measurements. In our investigation of the causes of the said discrepancies we have identified important effects which could strongly influence the predicted wake profile. Predicted losses were improved by assuring the validity of the flow solution.


2021 ◽  
Author(s):  
Karim Mamdouh Youssef

Abstract Maintenance costs and machine availability are two of the most important concerns to gas turbine equipment owner. Therefore, a well thought out maintenance program that reduces costs while increasing equipment availability should be instituted. The correct implementation of planned maintenance relying on preventive maintenance optimization through perfect inspection frequency and scope provides direct benefits in the avoidance of forced outages, unscheduled repairs, and downtime. Major overhaul is carried out for each gas turbine every 48,000 firing hours which costs around 1 M USD for each engine and with more than 8 months unavailability for the unit. To increase equipment availability and enhance cost and time efficiency, alternatives approaches were evaluated including Service Exchange of gas turbines. It is found that service exchange is the best option for optimizing time and cost of overhaul of such engines. This paper is written to improve Major Overhaul practice for existing Gas Turbines from ongoing practice of routine major overhaul including engine strip down, inspection and repair to Service Exchange of Gas Generator and Power Turbine every 48,000 firing hours.


2021 ◽  
Vol 2129 (1) ◽  
pp. 012073
Author(s):  
Sufi Halim ◽  
Md Tasyrif Abdul Rahman ◽  
Anas Abdul Rahman ◽  
Nasrul Amri Mohd Amin ◽  
Nur Shuhaila Roslan ◽  
...  

Abstract Tesla turbine is a bladeless turbine that uses a set of discs arranged at a certain distance to rotate and one of the parameters controlling turbine performance is the inlet parameter. The purpose of this study is to optimize the design of the inlet nozzle and analyse its effects on the flow of the fluid. A total of four nozzle designs have been proposed using CATIA while the Solidworks Flow Simulator is used to analyse the fluid flow at various inlet velocities. Then, the most efficient design is then fabricated via 3D printing and put to test by connecting it with the actual Tesla turbine model. Through the results obtained from the analysis, it is observed that Design 4 is the most efficient of all tested nozzles and the highest RPM and output voltage achieved from the nozzle is 7940 RPM and 13.56 V. The difference in velocity and pressure increases as the area of the nozzle outlet reduces, whereas nozzle efficiency decreases as the inlet velocity increases. The result of this study is a source material for increasing the effectiveness of an alternative power turbine in generating electricity by manipulating the inlet design geometry.


Author(s):  
Yong Wang ◽  
Changpeng Cai ◽  
Jie Song ◽  
Haibo Zhang

Abstract In order to overcome the problem of significant drop in operational efficiency remarkably while power turbine speed varies among a large range, an optimal speed control method of multiple turboshaft engines based on sequential shifting control (SSC) algorithm is proposed. Firstly, combined with multi-speed gearboxes, a sequential shifting control algorithm of multiple turboshaft engines is proposed and designed to accomplish continuously variable speed control. Then, selecting the minimum engine fuel flow as the optimization objective, an integrated optimization method of optimal speed based on multiple engines and multi-speed gearboxes is proposed to promote the operational economy. Finally, the simulation tests of the optimal speed control method of twin and triple turboshaft engines is conducted separately. The results demonstrate that the optimal speed control method of multiple turboshaft engines based on SSC algorithm can change the power turbine speeds by no more than 7% and main rotor speed by over 8% simultaneously. In addition, compared with the fixed-ratio transmission (FRT), engine fuel flows decrease by more than 2% under different cruise states. It proves that the optimal speed control method is beneficial to obtain more superior overall performances of the integrated helicopter/multi-engine system without considerable loss of compressor surge margin.


Author(s):  
N.I. Troitskiy ◽  
V.D. Molyakov

The article discusses the results of experimental research of the impact of the law of profiling along the stage height on the characteristics of a turbine with an adjustable nozzle guide vanes. The results of the design study have been confirmed, taking into account meridional streamline bending. It is shown that in the stage profiled according to the law of constancy of the product of the radius of the flow path and the tangent of the blade angle the degree of reactivity in the root sections of the blades increases provided that the degree of reactivity at the middle diameter is the same as in a turbine with a constant blade angle, which leads to an increase in the turbine efficiency in modes with a reduced angle of arrangement of blades of the adjustable nozzle guide vanes and the degree of pressure reduction.


2021 ◽  
Author(s):  
André L. S. Andade ◽  
Osvaldo J. Venturini ◽  
Vladimir R. M. Cobas ◽  
Vinicius Zimmerman Silva

Abstract In order to increase the flexibility and performance of gas turbines, generally their manufacturers and research centers involved in their development are constantly seeking the expansion of their operational envelope as well as their efficiency, making the engine more dynamic, less polluting and able to respond promptly to variations in load demands. An important aspect that should be considered when analyzing these prime movers is the assessment of its behavior under transients due to load changes, which can be accomplished through the development of a detailed, accurate and effective computational model. Considering this scenario, the present work aims to develop a model for the simulation and analysis of the dynamic behavior of stationary gas turbines. The engine considered in this analysis has a nominal capacity of 30.7 MW (ISO conditions) and is composed by a two-spool gas generator and a free power turbine. The model was developed using T-MATS, an integrated Simulink/Matlab toolbox, develop by NASA. The gas turbine was evaluated under both permanent and transient regimes and each one of its component was analyzed individually. The assessment made it possible to determine the engine performance parameters such as efficiency, heat rate and specific fuel consumption and its operational limits (surge limits, stall, turbine inlet temperatures, etc.) under different load conditions and regimes. The results obtained were compared with available field data, and the relative deviations for the considered parameters were all lower than 1%.


2021 ◽  
Author(s):  
MANFREDI MAZZOLA ◽  
Andrea Bulleri ◽  
Paolo Pennacchi ◽  
Steven Chatterton
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document