styrene hydrogenation
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 22)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 125 (37) ◽  
pp. 20286-20300
Author(s):  
Robert H. Wells ◽  
Suming An ◽  
Prajay Patel ◽  
Cong Liu ◽  
Rex T. Skodje

Author(s):  
Joseph W. Gregory ◽  
S. David Jackson

AbstractThe cascade reactions of phenylacetylene to ethylcyclohexane and 1-phenyl-1-propyne to propylcyclohexane were studied individually, under deuterium and competitively at 343 K and 3 barg pressure over a Rh/silica catalyst. Both systems gave similar activation energies for alkyne hydrogenation (56 ± 4 kJ mol−1 for phenylacetylene and 50 ± 4 kJ mol−1 for 1-phenyl-1-propyne). Over fresh catalyst the order of reactivity was styrene > phenylacetylene ≫ ethylbenzene. Whereas with the cascade hydrogenation starting with phenylacetylene, styrene hydrogenated much slower phenylacetylene even once all the phenylacetylene was hydrogenated. The activity of ethylbenzene was also reduced in the cascade reaction and after styrene hydrogenation. These reductions in rate were likely due to carbon laydown from phenylacetylene and styrene. Similar behavior was observed with the 1-phenyl-1-propyne cascade. Deuterium experiments revealed similar positive KIEs for phenylacetylene (2.6) and 1-phenyl-1-propyne (2.1). Ethylbenzene hydrogenation/deuteration gave a KIE of 1.6 obtained after styrene hydrogenation in contrast to the inverse KIE of 0.4 found with ethylbenzene hydrogenation/deuteration over a fresh catalyst, indicating a change in rate determining step. Competitive hydrogenation between phenylacetylene and styrene reduced the rate of phenylacetylene hydrogenation but increased selectivity to ethylbenzene suggesting a change in the flux of sub-surface hydrogen. In the competitive reaction between 1-phenyl-1-propyne and propylbenzene, the rate of hydrogenation of 1-phenyl-1-propyne was increased and the rate of alkene isomerization was decreased, likely due to an increase in the hydrogen flux for hydrogenation and a decrease in the hydrogen species active in methylstyrene isomerization.


2021 ◽  
pp. 138604
Author(s):  
Yuxia Ma ◽  
Zhe Su ◽  
Nanfang Tang ◽  
Shuai Chen ◽  
Wentao Wang ◽  
...  

2021 ◽  
Author(s):  
Prajay Patel ◽  
Robert Wells ◽  
David Kaphan ◽  
Massimiliano Delferro ◽  
Rex T. Skodje ◽  
...  

<div> <div> <p></p><p><a>A crucial consideration for supported heterogeneous catalysts is the non-uniformity of the active sites, particularly for Supported Organometallic Catalysts (SOMCs). Standard spectroscopic techniques, such as X-ray absorption spectroscopy (XAS), reflect the nature of the most populated sites, which are often intrinsically structurally distinct from the most catalytically active sites. With computational models, often only a few representative structures are used to depict catalytic active sites on a surface, even though there are numerous observable factors of surface heterogeneity that contribute to the kinetically favorable active species. A previously reported study on the mechanism of a surface organovanadium(III) catalyst [(SiO)V<sup>III</sup>(Mes)(THF)] for styrene hydrogenation yielded two possible mechanisms: heterolytic cleavage and redox cycling. These two mechanistic scenarios are challenging to differentiate experimentally based on the kinetic readouts of the catalyst are identical. To showcase the importance of modeling surface heterogeneity and its effect on catalytic activity, density functional theory (DFT) computational models of a series of potential active sites of [(SiO)V<sup>III</sup>(Mes)(THF)] for the reaction pathways are applied in combination with kinetic Monte Carlo (kMC) simulations. Computed results were t then compared to the previously reported experimental kinetic study</a><a>.: 1) DFT free energy reaction pathways indicated the likely active site and pathway for styrene hydrogenation; a heterolytic cleavage pathway requiring a bare tripodal vanadium site. 2) From the kMC simulations, a mixture of the different bond lengths from the support oxygen to the metal center was required to qualitatively describe the experimentally observed kinetic aspects of a supported organovanadium(III) catalyst for olefin hydrogenation. </a>This work underscores the importance of modeling surface heterogeneity in computational catalysis.</p><p></p></div></div>


2021 ◽  
Author(s):  
Prajay Patel ◽  
Robert Wells ◽  
David Kaphan ◽  
Massimiliano Delferro ◽  
Rex T. Skodje ◽  
...  

<div> <div> <p></p><p><a>A crucial consideration for supported heterogeneous catalysts is the non-uniformity of the active sites, particularly for Supported Organometallic Catalysts (SOMCs). Standard spectroscopic techniques, such as X-ray absorption spectroscopy (XAS), reflect the nature of the most populated sites, which are often intrinsically structurally distinct from the most catalytically active sites. With computational models, often only a few representative structures are used to depict catalytic active sites on a surface, even though there are numerous observable factors of surface heterogeneity that contribute to the kinetically favorable active species. A previously reported study on the mechanism of a surface organovanadium(III) catalyst [(SiO)V<sup>III</sup>(Mes)(THF)] for styrene hydrogenation yielded two possible mechanisms: heterolytic cleavage and redox cycling. These two mechanistic scenarios are challenging to differentiate experimentally based on the kinetic readouts of the catalyst are identical. To showcase the importance of modeling surface heterogeneity and its effect on catalytic activity, density functional theory (DFT) computational models of a series of potential active sites of [(SiO)V<sup>III</sup>(Mes)(THF)] for the reaction pathways are applied in combination with kinetic Monte Carlo (kMC) simulations. Computed results were t then compared to the previously reported experimental kinetic study</a><a>.: 1) DFT free energy reaction pathways indicated the likely active site and pathway for styrene hydrogenation; a heterolytic cleavage pathway requiring a bare tripodal vanadium site. 2) From the kMC simulations, a mixture of the different bond lengths from the support oxygen to the metal center was required to qualitatively describe the experimentally observed kinetic aspects of a supported organovanadium(III) catalyst for olefin hydrogenation. </a>This work underscores the importance of modeling surface heterogeneity in computational catalysis.</p><p></p></div></div>


2021 ◽  
Author(s):  
Prajay Patel ◽  
Robert Wells ◽  
David Kaphan ◽  
Massimiliano Delferro ◽  
Rex T. Skodje ◽  
...  

<div> <div> <p></p><p><a>A crucial consideration for supported heterogeneous catalysts is the non-uniformity of the active sites, particularly for Supported Organometallic Catalysts (SOMCs). Standard spectroscopic techniques, such as X-ray absorption spectroscopy (XAS), reflect the nature of the most populated sites, which are often intrinsically structurally distinct from the most catalytically active sites. With computational models, often only a few representative structures are used to depict catalytic active sites on a surface, even though there are numerous observable factors of surface heterogeneity that contribute to the kinetically favorable active species. A previously reported study on the mechanism of a surface organovanadium(III) catalyst [(SiO)V<sup>III</sup>(Mes)(THF)] for styrene hydrogenation yielded two possible mechanisms: heterolytic cleavage and redox cycling. These two mechanistic scenarios are challenging to differentiate experimentally based on the kinetic readouts of the catalyst are identical. To showcase the importance of modeling surface heterogeneity and its effect on catalytic activity, density functional theory (DFT) computational models of a series of potential active sites of [(SiO)V<sup>III</sup>(Mes)(THF)] for the reaction pathways are applied in combination with kinetic Monte Carlo (kMC) simulations. Computed results were t then compared to the previously reported experimental kinetic study</a><a>.: 1) DFT free energy reaction pathways indicated the likely active site and pathway for styrene hydrogenation; a heterolytic cleavage pathway requiring a bare tripodal vanadium site. 2) From the kMC simulations, a mixture of the different bond lengths from the support oxygen to the metal center was required to qualitatively describe the experimentally observed kinetic aspects of a supported organovanadium(III) catalyst for olefin hydrogenation. </a>This work underscores the importance of modeling surface heterogeneity in computational catalysis.</p><p></p></div></div>


Sign in / Sign up

Export Citation Format

Share Document