alkyne hydrogenation
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 15)

H-INDEX

25
(FIVE YEARS 5)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3286
Author(s):  
Alexander V. Rassolov ◽  
Igor S. Mashkovsky ◽  
Galina N. Baeva ◽  
Galina O. Bragina ◽  
Nadezhda S. Smirnova ◽  
...  

This research was focused on studying the performance of the Pd1Ag3/Al2O3 single-atom alloy (SAA) in the liquid-phase hydrogenation of di-substituted alkyne (1-phenyl-1-propyne), and development of a kinetic model adequately describing the reaction kinetic being also consistent with the reaction mechanism suggested for alkyne hydrogenation on SAA catalysts. Formation of the SAA structure on the surface of PdAg3 nanoparticles was confirmed by DRIFTS-CO, revealing the presence of single-atom Pd1 sites surrounded by Ag atoms (characteristic symmetrical band at 2046 cm−1) and almost complete absence of multiatomic Pdn surface sites (<0.2%). The catalyst demonstrated excellent selectivity in alkyne formation (95–97%), which is essentially independent of P(H2) and alkyne concentration. It is remarkable that selectivity remains almost constant upon variation of 1-phenyl-1-propyne (1-Ph-1-Pr) conversion from 5 to 95–98%, which indicates that a direct alkyne to alkane hydrogenation is negligible over Pd1Ag3 catalyst. The kinetics of 1-phenyl-1-propyne hydrogenation on Pd1Ag3/Al2O3 was adequately described by the Langmuir-Hinshelwood type of model developed on the basis of the reaction mechanism, which suggests competitive H2 and alkyne/alkene adsorption on single atom Pd1 centers surrounded by inactive Ag atoms. The model is capable to describe kinetic characteristics of 1-phenyl-1-propyne hydrogenation on SAA Pd1Ag3/Al2O3 catalyst with the excellent explanation degree (98.9%).


2021 ◽  
Vol 60 (19) ◽  
pp. 14530-14534
Author(s):  
Kelsey L. Hodge ◽  
Matthew B. Gray ◽  
Wolfgang Windl ◽  
Joshua E. Goldberger

Author(s):  
Joseph W. Gregory ◽  
S. David Jackson

AbstractThe cascade reactions of phenylacetylene to ethylcyclohexane and 1-phenyl-1-propyne to propylcyclohexane were studied individually, under deuterium and competitively at 343 K and 3 barg pressure over a Rh/silica catalyst. Both systems gave similar activation energies for alkyne hydrogenation (56 ± 4 kJ mol−1 for phenylacetylene and 50 ± 4 kJ mol−1 for 1-phenyl-1-propyne). Over fresh catalyst the order of reactivity was styrene > phenylacetylene ≫ ethylbenzene. Whereas with the cascade hydrogenation starting with phenylacetylene, styrene hydrogenated much slower phenylacetylene even once all the phenylacetylene was hydrogenated. The activity of ethylbenzene was also reduced in the cascade reaction and after styrene hydrogenation. These reductions in rate were likely due to carbon laydown from phenylacetylene and styrene. Similar behavior was observed with the 1-phenyl-1-propyne cascade. Deuterium experiments revealed similar positive KIEs for phenylacetylene (2.6) and 1-phenyl-1-propyne (2.1). Ethylbenzene hydrogenation/deuteration gave a KIE of 1.6 obtained after styrene hydrogenation in contrast to the inverse KIE of 0.4 found with ethylbenzene hydrogenation/deuteration over a fresh catalyst, indicating a change in rate determining step. Competitive hydrogenation between phenylacetylene and styrene reduced the rate of phenylacetylene hydrogenation but increased selectivity to ethylbenzene suggesting a change in the flux of sub-surface hydrogen. In the competitive reaction between 1-phenyl-1-propyne and propylbenzene, the rate of hydrogenation of 1-phenyl-1-propyne was increased and the rate of alkene isomerization was decreased, likely due to an increase in the hydrogen flux for hydrogenation and a decrease in the hydrogen species active in methylstyrene isomerization.


2019 ◽  
Vol 67 (3) ◽  
pp. 353-360 ◽  
Author(s):  
Mei‐Hui Huang ◽  
Xue‐Ru Zou ◽  
Lan‐Chang Liang
Keyword(s):  

ACS Catalysis ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 441-450 ◽  
Author(s):  
Mathilde Luneau ◽  
Tanya Shirman ◽  
Alexandre C. Foucher ◽  
Kaining Duanmu ◽  
David M.A. Verbart ◽  
...  

ACS Catalysis ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 10656-10667 ◽  
Author(s):  
Zhongzhe Wei ◽  
Zihao Yao ◽  
Qiang Zhou ◽  
Guilin Zhuang ◽  
Xing Zhong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document