scholarly journals Six Decades of Growth and Yield and Financial Return in a Silviculture Experiment in Northern Hardwoods

2021 ◽  
Author(s):  
Maeve C Draper ◽  
Robert E Froese

Abstract The Cutting Methods Study at the Ford Forest in the Upper Peninsula of Michigan, USA, was established in 1956 and has been maintained continuously on a 10 year cycle. Methods consist of three diameter limits (DL; 13, 30, and 41 cm), single-tree selection to three residual basal area limits (STS; 11, 16, and 21 m2ha−1), and light improvement (LI) focused on improving tree grade. Long-term results show that the 41 cm DL produced the greatest managed forest value and cumulative sawlog production, followed by the STS to 11 m2ha−1 residual basal area. STS treatments and LI were uniformly superior at improving standing tree grade. In contrast, treatments that emphasize removal of large diameter trees while retaining moderate residual basal area (the 41 cm DL and 11 m2ha−1 STS) produced the largest harvest volumes of high-grade sawlogs, driving financial performance. Stand density has declined in all treatments except the 30 and 41 cm DL, where it has increased, and these two treatments have larger abundance of saplings and poles. Alternative partial cutting methods such as selection to lower residual basal areas and medium-intensity diameter-limit cuts thus may provide greater financial returns and higher average quality, and could have implications on regeneration and long-term sustainability. Study Implications: Long-term comparison of alternative partial cutting practices in northern hardwoods in the Upper Peninsula of Michigan over 60 years reveals that Arbogast-based single-tree selection is inferior using financial and volume yield criteria. Alternatives that remove more of the larger trees appear over time to increase regeneration and harvested tree quality, which in turn drives financial performance. However, treatments with extremely high volume removals perform poorly against all others, and have few, if any, redeeming financial, silvicultural, or ecological qualities.

2003 ◽  
Vol 79 (5) ◽  
pp. 898-905 ◽  
Author(s):  
Steve Bédard ◽  
Zoran Majcen

Eight experimental blocks were established in the southern part of Québec to determine the growth response of sugar maple (Acer saccharum) dominated stands after single tree selection cutting. Each block contained eight control plots (no cut) and eight cut plots. The intensity of removal varied between 21% and 32% and residual basal area was between 18.2 and 21 m2/ha. Ten year net annual basal area growth rates in cut plots (0.35 ± 0.04 m2/ha) were significantly higher (p = 0.0022) than in control plots (0.14 ± 0.06 m2/ha). The treatment particularly favoured diameter growth of stems between 10 and 30 cm in dbh, whose crowns were released by removing neighbouring trees. These results show that if the same net growth rate is maintained in the next decade most of the cut plots will reach their pre-cut basal area in about 20 years after cutting. Key words: northern hardwoods, selection cutting, uneven aged silviculture, basal area growth, diameter growth


2019 ◽  
Vol 66 (2) ◽  
pp. 256-265 ◽  
Author(s):  
Brian D Anderson ◽  
Marcella A Windmuller-Campione ◽  
Matthew B Russell ◽  
Brian J Palik ◽  
Douglas N Kastendick

Abstract Across the boreal forest in North America, the black spruce (Picea mariana) cover type is ecologically and economically important, occupying roughly 10 percent of Minnesota’s, USA 17.4 million acres (7.0 million hectares) of forestland. Traditionally managed through clearcut regeneration harvests, alternative silvicultural systems are being increasingly used in Canada. Here, we examine the 10- and 57-year effects of six silvicultural treatments (clearcut strips, clearcut patches, thinning, group selection, single-tree selection, shelterwood) on stand structure and dynamics in lowland black spruce. Treatments were installed in 1948 in northern Minnesota, and remeasured and re-treated 10 years later. A subset of the clearcut strips, clearcut patches, and shelterwood treatments were remeasured in 2017. After 10 years, diameter growth of residual stems varied by treatment, with the shelterwood experiencing the greatest growth, and basal area increased in all but the shelterwood treatment. Over the long term, the shelterwood exhibited larger diameters and heights and greater crown ratios, basal area, structural complexity, and compositional diversity than the clearcuts. Our results suggest that managers may consider using a shelterwood instead of traditional large clearcuts to achieve increased structural and compositional diversity, particularly when eastern spruce dwarf mistletoe (Arceuthobium pusillum) does not necessitate a traditional clearcut.


2020 ◽  
Author(s):  
Alexander C Helman ◽  
Matthew C Kelly ◽  
Mark D Rouleau ◽  
Yvette L Dickinson

Abstract Managing northern hardwood forests using high-frequency, low-intensity regimes, such as single-tree selection, favors shade-tolerant species and can reduce tree species diversity. Management decisions among family forest owners (FFO) can collectively affect species and structural diversity within northern hardwood forests at regional scales. We surveyed FFOs in the Western Upper Peninsula of Michigan to understand likely future use of three silvicultural treatments—single-tree selection, shelterwood, and clearcut. Our results indicate that FFOs were most likely to implement single-tree selection and least likely to implement clearcut within the next 10 years. According to logistic regression, prior use of a treatment and perceived financial benefits significantly increased the odds for likely use for all three treatments. Having received professional forestry assistance increased likely use of single-tree selection but decreased likely use of shelterwood. We discuss these results within the context of species diversity among northern hardwood forests throughout the region.


1995 ◽  
Vol 19 (2) ◽  
pp. 84-88 ◽  
Author(s):  
Philip A. Tappe ◽  
Michael D. Cain ◽  
T. Bently Wigley ◽  
Derik J. Reed

Abstract The effects of overstory pine basal area on plant community structure and composition were assessed in uneven-aged stands of loblolly and shortleaf pines (Pinus taedaL. and P. echinata Mill.) in southern Arkansas. Basal area treatments were 40, 60, 80, and 100 ft2/ac for the merchantable pine component (>3.5 in. dbh) and were maintained on a 6 yr cutting cycle using single-tree selection. Assessments of plant communities were made 10 yr after a single hardwood control treatment. The four levels of pine basal area had no effect on percent ground cover of most plants <3 ft tall, but ground cover from graminoids decreased as pine basal area increased. Vertical cover above loft height increased 33% as overstory basal area increased from 40 to 100 ft2/ac, but basal area had no effect on horizontal cover in height zones between 0 and 10ft. It is concluded that uneven-aged stands of loblolly-shortleaf pine with merchantable basal areas of from 40 to 100 ft²/ac may support similar plant species in the understory and consequently probably provide similar habitat requirements for a variety of game and nongame wildlife. South. J. Appl. For. 19(2):84-88.


1993 ◽  
Vol 3 (1) ◽  
pp. 13 ◽  
Author(s):  
MD Cain

The effects of burning cycles and pine basal area levels were assessed on natural pine regeneration and hardwood development in uneven-aged stands of loblolly and shortleaf pines (Pinus taeda L. and P. echinata Mill.). The treatments included an unburned control and prescribed winter burns at 3-, 6-, and 9-yr intervals. Basal area treatments were 9, 14, 18, and 23 m2 ha-1 for the merchantable-pine component and were maintained on a 6-yr cutting cycle using single-tree selection. Ten years after the study was initiated, density and quadrat stocking of pine regeneration were negatively correlated with overstorey basal area. The 6-yr burning cycle had higher pine density and better quadrat stocking of pine regeneration compared with any other bum treatment mainly because the 6-yr burning cycle coincided with a bumper pine seedcrop and the 6-yr cutting cycle. Recurring fires tended to result in reduced size of hardwood competition but had less impact on hardwood density. When considering a prescribed burning program in uneven-aged stands of loblolly and shortleaf pines, more attention should be given to density, quadrat stocking, and size of established pine regeneration and to expected seedcrops rather than to the prosecution of rigid burning schedules.


2018 ◽  
Vol 169 (6) ◽  
pp. 332-339 ◽  
Author(s):  
Joachim Klädtke

Effects of heavy selective thinnings in beech stands with regard to stand productivity and structural diversity Based on thinning trials in beech stands initiated in the early 1970s, the effects of selective thinnings in favour of 100 to 120 future crop trees were analysed with regard to volume productivity and the stands' structural diversity. The results show that these kinds of thinnings reduce volume productivity by approximately 6% compared to the maximum volume growth. The reduction in volume growth is mostly caused by the fact that the strongly released crop trees have reduced their height growth for the benefit of a lateral crown expansion, while basal area growth was not affected. Calculations indicate that silvicultural systems working with only 50 future crop trees per hectare may decrease the maximum volume production by about 12%. Furthermore, the results show that the intense crown releases caused by selection thinnings increase the horizontal and vertical diversity of beech stands, since the trees in the understorey profit from better light conditions. The indices calculated for diameter and height diversity of the selection thinning plots approach the values being typical for single tree selection forests (“Plenterwälder”). Already after three to four consecutive selection thinnings, the beech stands' diameter distributions displayed an exponentionally decreasing shape typical for single tree selection forests close to equilibrium. Growth simulations revealed that it might even be possible to directly transform beech stands by selection thinnings into single tree selection structures. However, presumably negative effects on timber quality to be expected under single tree selection structures should be considered as a critical aspect with regard to theoretically possible transformation.


2006 ◽  
Vol 23 (2) ◽  
pp. 141-143 ◽  
Author(s):  
William B. Leak

Abstract Records from the early 1950s on the Bartlett Experimental Forest in New Hampshire showed that the percentage of American beech trees infected with heavy beech scale and Nectria was up to the 80 to 90% range. An inventory of beech bark disease conditions in three stands in 2004 showed that an older, uneven-aged stand managed by individual tree selection for 50 years had over 70% of the basal area in clean- (or disease-free) and rough-barked trees—trees that showed resistance or partial resistance to the disease; 15% of the basal area was clean. In contrast, an adjacent essentially unmanaged stand had well over 60% of the basal area in Nectria-damaged trees—those with sunken bark because of cambial mortality. A young unmanaged stand had a little over 60% of the basal area in mostly rough-barked trees. Records indicate that the amount of beech was not reduced by the disease in any of the inventoried stands. Apparently, single-tree selection over a 50-year period has substantially improved the disease resistance and merchantable potential of the stand.


1994 ◽  
Vol 18 (3) ◽  
pp. 128-132 ◽  
Author(s):  
Paul A. Murphy ◽  
Michael G. Shelton

Abstract The effects of three levels of residual basal area (40, 60, and 80 ft2/ac), maximum dbh (12, 16, and 20 in.) and site index (< 81 ft, 81 to 90 ft, and >90 ft) on the growth of loblolly pine (Pinus taeda L.) stands after 5 yr of uneven-aged silviculture were determined from plots located in south Arkansas and north Louisiana. Designated levels of basal area and maximum dbh were achieved by harvesting; a q factor of 1.2 (using 1 in. dbh classes) was imposed on all plots as closely as possible. Stand-level models were developed for annual per acre net volume growth (merchantable cubic feet, sawtimber cubic feet, and sawtimber board feet, Doyle rule) and annual per acre survivor growth, ingrowth, and mortality components of basal area growth. Growth for all volume measures increased with an increase in basal area. Site index did not significantly affect merchantable cubic-foot growth but had a positive effect on sawtimber growth in both cubic feet and board feet, Doyle. Increases in maximum dbh decreased merchantable and sawtimber cubic-foot growth but increased growth for board-foot volume, Doyle. South. J. Appl. For. 18(3): 128-132.


2003 ◽  
Vol 33 (12) ◽  
pp. 2306-2320 ◽  
Author(s):  
Susan K Stevenson ◽  
Darwyn S Coxson

Dynamics of canopy lichens were investigated for 2 years after group and single-tree selection harvesting in a Picea engelmannii Parry ex Engelm. – Abies lasiocarpa (Hook.) Nutt. forest in north-central British Columbia. Litter fall was collected in 1-m2 traps set on the forest floor and estimates of Alectoria sarmentosa (Ach.) Ach. and Bryoria spp. litterfall adjusted for decomposition in the snowpack. Growth rates of A. sarmentosa and Bryoria fuscescens (Gyeln.) Brodo & D. Hawksworth were measured by repeatedly weighing samples maintained in mesh enclosures in the canopy. Standing crop of canopy lichens was measured in concurrent studies. There appeared to be a small postharvest pulse of litterfall in the single-tree selection area, but it was largely masked by natural variation. Ninety percent of the lichen litterfall was deposited within 10 m of the nearest tree. Annual relative growth rates of A. sarmentosa and B. fuscescens ranged from 2.7% to 10.4% and from 2.4% to 9.1%, respectively. Growth rates of both species were as high in the single-tree selection area as in the unlogged control area but were reduced along the edges of group selection openings. Growth and turnover (annual litterfall as a percentage of standing crop) of Alectoria were approximately in balance, but growth of Bryoria exceeded turnover. In situ decomposition of Bryoria may account for the difference.


Sign in / Sign up

Export Citation Format

Share Document