amikacin sulfate
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Anzhela S. Shurshina ◽  
◽  
Elena I. Kulish ◽  

The transport properties of medicinal films based on sodium salt of carboxymethylcellulose and the antibiotic amikacin sulfate have been studied in this work. It has been shown that the process of sorption of water vapor by such films and the release of a drug from them proceeds in an abnormal diffusion mode, which is explained by the slowdown of relaxation processes in glassy polymers, which include the sodium salt of carboxymethylcellulose. An increase of the amount of the introduced drug is accompanied by a regular decrease in the diffusion coefficients of both the process of sorption of water vapor and the release of amikacin from the films. It is noted that the formed films of sodium salt of carboxymethylcellulose-amikacin sulfate dissolve in water during the day and do not provide a prolonged release of the drug. To reduce the solubility of the films in water, the surface modification of the polymer film with calcium chloride has been carried out. It has been found that the modification does not lead to a change in the diffusion mode, but is accompanied by a regular change in the diffusion coefficients – the longer the formed films were kept in a calcium chloride solution, the lower the diffusion coefficients of the sorption of water vapor by medicinal films and the diffusion coefficients of the release of the drug amikacin from the film. It is argued that the surface modification of polymer films based on the sodium salt of carboxymethylcellulose is an effective way of imparting to them the effect of prolonging the release of a drug.


Pharmacia ◽  
2020 ◽  
Vol 67 (4) ◽  
pp. 233-237
Author(s):  
Yozlem Ali Kobakova ◽  
Maria Moneva-Sakelarieva ◽  
Petar Atanasov ◽  
Stefka Ivanova ◽  
Danka Obreshkova

The aim of current study was the investigation of complex treatment including nutritional supplement with recognized antioxidant and immunomodulatory properties (malic, glycyrrhizic, ascorbic and folic acids, glucosamine, arginine, glycine, calcium pantothenate, cyanocobalamine, zinc sulfate, pyridoxal) and purely plant systemic protease supplement (Serrapeptase, Bromelaim, Boswellia, Uncaria tomentosa, Quercetin) as a strategy against Covid 19. A clinical case of a 33-year-old patient treated in Internal Clinic Diseases ”Pirogov” against atypical bilaterally viral pneumonia with RT-PCR proven coronavirus have been presented. A complex treatment strategy was applied: Doxycycline, Amikacin sulfate, food additive containing malic and glycyrhizic acids, aminoacids, B-vitamins, antioxidants, proteolytic agent, Methylprednisolone, anticoagulant: Nadroparin calcium, hepatoprotector: Ademethionine. After 16 days hospitalization and two negative RT-PCR tests the patient was discharged in improved condition and home treatment with Levofloxacin hemihydrate, vitamins, probiotics, immunomodulatory and proteolytic products for one month was recommended. Immunostimulating, proteolytic and other products have an important role in complex treatment.


2019 ◽  
Vol 1776 (1) ◽  
pp. 42-42
Keyword(s):  

2019 ◽  
Vol 15 (5) ◽  
pp. 511-520 ◽  
Author(s):  
Muneeba Usmani ◽  
Sofia Ahmed ◽  
Muhammad Ali Sheraz ◽  
Iqbal Ahmad

Background: Amikacin sulfate (AMK) belongs to the class of aminoglycoside antibiotics. It is effective against the infections caused by Gram-negative and positive bacteria. AMK lacks a chromophore group in its structure and, therefore, it does not absorb light in the 200-800 nm region which makes it a difficult molecule to analyze by UV detector using high performance liquid chromatography (HPLC). Objective: This study has been carried out to develop and validate a relatively simple, accurate, precise, rapid, economical, and stability-indicating pre-column derivatization HPLC method for the determination of AMK in pure and parenteral dosage forms. Methods: The stock solution of AMK was derivatized prior to its analysis. The mobile phase used for the analysis was acetonitrile and water in the ratio of 50:50 (v/v) at pH 6.0. The method has been validated according to the guideline of International Council for Harmonization (ICH) and different parameters such as linearity, range, accuracy, precision, sensitivity, robustness, solution stability, specificity and system suitability have been studied. AMK was subjected to stress degradation studies including thermolysis, humidity exposure, acid-base hydrolysis, and oxidation in order to determine the specificity of the test method. Results: The retention time of AMK has been found to be 4.7 min. The results indicated that the method is linear in the concentration range of 12.5-125% and possesses high accuracy (99.88±0.42%), precision ((<1.2%) and robustness (<0.5%). The obtained results are compared statistically with a reference method. Conclusion: It was observed that the stress degradation studies do not affect the accuracy of the method. Hence the proposed method can be used for the assay of AMK and its parenteral dosage form.


Sign in / Sign up

Export Citation Format

Share Document