scheduling mechanisms
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 16)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Aris Filos-Ratsikas ◽  
Yiannis Giannakopoulos ◽  
Philip Lazos

We study the trade-off between the price of anarchy (PoA) and the price of stability (PoS) in mechanism design in the prototypical problem of unrelated machine scheduling. We give bounds on the space of feasible mechanisms with respect to these metrics and observe that two fundamental mechanisms, namely the first price (FP) and the second price (SP), lie on the two opposite extrema of this boundary. Furthermore, for the natural class of anonymous task-independent mechanisms, we completely characterize the PoA/PoS Pareto frontier; we design a class of optimal mechanisms [Formula: see text] that lie exactly on this frontier. In particular, these mechanisms range smoothly with respect to parameter [Formula: see text] across the frontier, between the first price ([Formula: see text]) and second price ([Formula: see text]) mechanisms. En route to these results, we also provide a definitive answer to an important question related to the scheduling problem, namely whether nontruthful mechanisms can provide better makespan guarantees in the equilibrium compared with truthful ones. We answer this question in the negative by proving that the price of anarchy of all scheduling mechanisms is at least n, where n is the number of machines.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Jitong Li ◽  
Chao Wang ◽  
Daehee Seo ◽  
Xiaoman Cheng ◽  
Yunhua He ◽  
...  

Green roadside units (RSUs), also called renewable energy-powered RSUs, are utilized recently rather than the traditional electric-powered RSUs with high power consumption and the large infrastructure deployment cost in the Internet of vehicles (IoVs). However, the power of the green RSUs is limited and unstable, which is affected by the battery size and charging environment. Therefore, a big challenge to deploy green RSUs in the IoVs is to schedule their service process properly, in order to extend the service efficiency of RSUs. In this paper, a deep learning-based communication scheduling mechanism is proposed regarding the service scheduling problem. In particular, a three-part scheduling algorithm consisting of RSU clustering, deep learning-based traffic prediction, and a vehicle access scheduling algorithm is presented to maximize the service number of vehicles and minimize the energy cost. An extensive simulation is done, and the simulation results indicate that our algorithm can serve more vehicles with less energy consumption compared with other scheduling mechanisms under different scenarios.


Author(s):  
S. M. Reza Dibaj ◽  
Ali Miri ◽  
SeyedAkbar Mostafavi

AbstractDouble auctions are considered to be effective price-scheduling mechanisms to resolve cloud resource allocation and service pricing problems. Most of the classical double auction models use price-based mechanisms in which determination of the winner is based on the prices offered by the agents in the market. In cloud ecosystems, the services offered by cloud service providers are inherently time-constrained and if they are not sold, the allocated resources for the unsold services are wasted. Furthermore, cloud service users have time constraints to complete their tasks, otherwise, they would not need to request these services. These features, perishability and time-criticality, have not received much attention in most classical double auction models. In this paper, we propose a cloud priority-based dynamic online double auction mechanism (PB-DODAM), which is aligned with the dynamic nature of cloud supply and demand and the agents’ time constraints. In PB-DODAM, a heuristic algorithm which prioritizes the agents’ asks and bids based on their overall condition and time constraints for resource allocation and price-scheduling mechanisms is proposed. The proposed mechanism drastically increases resource allocation and traders’ profits in both low-risk and high-risk market conditions by raising the matching rate. Moreover, the proposed mechanism calculates the precise defer time to wait for any urgent or high-priority request without sacrificing the achieved performance in resource allocation and traders’ profits. Based on experimental results in different scenarios, the proposed mechanism outperforms the classical price-based online double auctions in terms of resource allocation efficiency and traders’ profits while fulfilling the double auction’s truthfulness pillar.


Sign in / Sign up

Export Citation Format

Share Document