SHEAR STRENGTH AND STIFFNESS BEHAVIOR OF FINE-GRAINED SOILS AT DIFFERENT SURFACE HYDRATION CONDITIONS

Author(s):  
Jeongki Lee ◽  
Dante Fratta ◽  
Idil Deniz Akin

We developed an experimental program to monitor how interparticle forces control fine-grained soils' mechanical behavior when saturation changes from the tightly adsorbed regime to saturation. The testing program uses stiffness (i.e., S-wave velocity) and strength (i.e., Brazilian tensile strength) tests on kaolinite, silica flour, and diatomaceous earth soil samples at very low confining stresses (< 5 kPa). Three fine-grained soils yield a range of different properties, including particle size, specific surface area, negative charge density, and internal/external particle porosity. Results show that shear stiffness and tensile strength follow similar trends, emphasizing that the same interparticle forces control the mechanical responses. In particular, the interpretation of S-wave velocity measurements shows three different behavior ranges: a van der Waals attraction range, a capillary-dominated interparticle forces range, and the continuous decrease in the capillary forces from the saturation at the air-entry pressure until full saturation. We show that the interparticle forces respond to a complex function of water content, particle size, particle separations, surface charge density, and the presence of internal particle porosity.

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guanghui Jiang ◽  
Jianping Zuo ◽  
Teng Ma ◽  
Xu Wei

Understanding the change of permeability of rocks before and after heating is of great significance for exploitation of hydrocarbon resources and disposal of nuclear waste. The rock permeability under high temperature cannot be measured with most of the existing methods. In this paper, quality, wave velocity, and permeability of granite specimen from Maluanshan tunnel are measured after high temperature processing. Quality and wave velocity of granite decrease and permeability of granite increases with increasing temperature. Using porosity as the medium, a new wave velocity-permeability model is established with modified wave velocity-porosity formula and Kozeny-Carman formula. Under some given wave velocities and corresponding permeabilities through experiment, the permeabilities at different temperatures and wave velocities can be obtained. By comparing the experimental and the theoretical results, the proposed formulas are verified. In addition, a sensitivity analysis is performed to examine the effect of particle size, wave velocities in rock matrix, and pore fluid on permeability: permeability increases with increasing particle size, wave velocities in rock matrix, and pore fluid; the higher the rock wave velocity, the lower the effect of wave velocities in rock matrix and pore fluid on permeability.


2018 ◽  
Vol 760 ◽  
pp. 213-218
Author(s):  
František Girgle ◽  
Lenka Bodnárová ◽  
Ondřej Januš ◽  
Vojtěch Kostiha

The article deals with the current problem of determining long-term reliability of non-metallic reinforcement in concrete structures. The alkaline environment of concrete with a pH higher than 12.0 affects the glass fibres degradative, whereas this degradation presents by reduction of their mechanical characteristics, resulting in a decrease in the tensile strength of the whole composite. The article summarizes the results of the ongoing experimental program so far, which aims to quantify this influence.


2008 ◽  
Vol 59 (11) ◽  
pp. 1182-1185 ◽  
Author(s):  
A. Molotnikov ◽  
R. Lapovok ◽  
C.H.J. Davies ◽  
W. Cao ◽  
Y. Estrin

2014 ◽  
Vol 96 ◽  
pp. 353-360
Author(s):  
Ya-Chuan Lai ◽  
Bor-Shouh Huang ◽  
Yu-Chih Huang ◽  
Huajian Yao ◽  
Ruey-Der Hwang ◽  
...  

2018 ◽  
Vol 36 (6) ◽  
pp. 1609-1628 ◽  
Author(s):  
Chengzheng Cai ◽  
Feng Gao ◽  
Yugui Yang

Liquid nitrogen is a type of super-cryogenic fluid, which can cause the reservoir temperature to decrease significantly and thereby induce formation rock damage and cracking when it is injected into the wellbore as fracturing fluid. An experimental set-up was designed to monitor the acoustic emission signals of coal during its contact with cryogenic liquid nitrogen. Ultrasonic and tensile strength tests were then performed to investigate the effect of liquid nitrogen cooling on coal cracking and the changes in mechanical properties thereof. The results showed that acoustic emission phenomena occurred immediately as the coal sample came into contact with liquid nitrogen. This indicated that evident damage and cracking were induced by liquid nitrogen cooling. During liquid nitrogen injection, the ring-down count rate was high, and the cumulative ring-down counts also increased rapidly. Both the ring-down count rate and the cumulative ring-down counts during liquid nitrogen injection were much greater than those in the post-injection period. Liquid nitrogen cooling caused the micro-fissures inside the coal to expand, leading to a decrease in wave velocity and the deterioration in mechanical strength. The wave velocity, which was measured as soon as the sample was removed from the liquid nitrogen (i.e. the wave velocity was recorded in the cooling state), decreased by 14.46% on average. As the cryogenic samples recovered to room temperature, this value increased to 18.69%. In tensile strength tests, the tensile strengths of samples in cooling and cool-treated states were (on average) 17.39 and 31.43% less than those in initial state. These indicated that both during the cooling and heating processes, damage and cracking were generated within these coal samples, resulting in the acoustic emission phenomenon as well as the decrease in wave velocity and tensile strength.


1944 ◽  
Vol 17 (2) ◽  
pp. 451-474
Author(s):  
D. Parkinson

Abstract Carbon blacks can be grouped into different classes according to the way in which their fineness of division relates to different properties in rubber. Within any one class the principal properties vary in a regular manner with particle size. The normal class consists of the furnace carbons, Kosmos (Dixie)-40, Statex, the rubber-grade impingement carbons, and possibly, the color-grade impingement carbons. The subnormal classes consist of thermal carbons and acetylene and lamp blacks. Irrespective of the above classification, the properties which depend more on fineness of division than on other factors are rebound resilience, abrasion resistance, tensile strength and tear resistance. The lower limit of particle diameter for best tensile strength and tear resistance appears to be higher than that for abrasion resistance. B.S.I, hardness and electrical conductivity are properties which depend at least as much on other factors as on particle size. Stiffness (modulus) depends more on other factors than on particle size. Factors modifying the effects of particle size (or specific surface) include the presence of carbon-carbon structures and a reduction in strength of bond in rubber-carbon structures. Carbon black is thought to exist in rubber in four states: agglomerated, flocculated, dispersed, and bonded to the rubber molecules (the reënforcing fraction). Abrasion resistance is regarded as providing the only reliable measure of reënforcement.


2011 ◽  
Vol 54 (3) ◽  
pp. 286-298 ◽  
Author(s):  
Xiao-Man ZHANG ◽  
Jia-Fu HU ◽  
Yi-Li HU ◽  
Hai-Yan YANG ◽  
Jia CHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document