azadirachtin a
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 14)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 01 (01) ◽  
pp. 01-08
Author(s):  
Eustace Berinyuy ◽  
◽  
Jonathan Ibrahim ◽  
Blessing Alozieuwa

Despite the growing scientific interest in finding effective treatment, SARS-CoV-2 virus remains a global major health burden and public health emergency. SARS-CoV main protease (Mpro) also known as chymotrypsin-like protease (3CLpro) is an important protein identified to be vital for SARS-CoV-2 survival. However, to date, there are no clinically approved drugs or antibodies specific for SARS-CoV-2. In the present study, we evaluated the interaction of 3CLpro with azadirachtin-A a bioactive compound from Azadiracta indica using in silico molecular docking study. Our results revealed that Azadiractin A docked well into the binding cavity of 3CLproSARS-CoV-2 with binding affinities ranges between -6.3 and -5.20 kcal/mol, and Pkd of 5.82~6.10 for the ten best binding modes. Azadiractin interacted with the active site of 3CLpro-SARS-CoV-2 by 2 conventional hydrogen bonding to HIS163 and GLU166, C-H interactions with HIS127, and alkyl interaction with PRO168 of the 3CLpro-SARS-CoV-2. We also found that the Azadiractin-A_3CLpro-SARS-CoV-2 complex is stabilized by various Vander wall forces with ASN142, LEU141, PHE140, MET165, GLN189, LEU167, THR190, and ALA191. In conclusion, our results suggested that Azadirachtin-A could be a potential inhibitor of SARS-CoV-2 main protease, thus worthy of further preclinical study.


2020 ◽  
Vol 1 (2) ◽  
pp. 100-117
Author(s):  
Kripa Adhikari ◽  
Sudip Bhandari ◽  
Dikshya Niraula ◽  
Jiban Shrestha

Neem (Azadirachta indica A. Juss) is a member of Meliaceae family, a fast-growing tropical evergreen plant whose products were found effective against economically important insect pests and diseases. All parts of this plant particularly leaf, bark, and root extracts have the biopesticidal activities. Azadirachtin, a biopesticide obtained from neem extract, can be used for con-trolling various insect pests in agriculture. It acts on insects by repelling them, by inhibiting feeding, and by disrupting their growth, and reproduction. Neem-based formulations do not usually kill insects directly, but they can alter their behavior in significant ways to reduce pest damage to crops and reduce their reproductive potential. The neem is considered as an eas-ily accessible, eco-friendly, biodegradable, cheap, and non-toxic biopesticide which control the target pests. Thus, this re-view highlighted the extract, byproducts and roles of neem that can be used as potential biopesticide in agriculture.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Huiyan Wang ◽  
Ning Wang ◽  
Yixin Huo

Abstract Background Azadirachtin A is a triterpenoid from neem tree exhibiting excellent activities against over 600 insect species in agriculture. The production of azadirachtin A depends on extraction from neem tissues, which is not an eco-friendly and sustainable process. The low yield and discontinuous supply of azadirachtin A impedes further applications. The biosynthetic pathway of azadirachtin A is still unknown and is the focus of our study. Results We attempted to explore azadirachtin A biosynthetic pathway and identified the key genes involved by analyzing transcriptome data from five neem tissues through the hybrid-sequencing (Illumina HiSeq and Pacific Biosciences Single Molecule Real-Time (SMRT)) approach. Candidates were first screened by comparing the expression levels between the five tissues. After phylogenetic analysis, domain prediction, and molecular docking studies, 22 candidates encoding 2,3-oxidosqualene cyclase (OSC), alcohol dehydrogenase, cytochrome P450 (CYP450), acyltransferase, and esterase were proposed to be potential genes involved in azadirachtin A biosynthesis. Among them, two unigenes encoding homologs of MaOSC1 and MaCYP71CD2 were identified. A unigene encoding the complete homolog of MaCYP71BQ5 was reported. Accuracy of the assembly was verified by quantitative real-time PCR (qRT-PCR) and full-length PCR cloning. Conclusions By integrating and analyzing transcriptome data from hybrid-seq technology, 22 differentially expressed genes (DEGs) were finally selected as candidates involved in azadirachtin A pathway. The obtained reliable and accurate sequencing data provided important novel information for understanding neem genome. Our data shed new light on understanding the biosynthesis of other triterpenoids in neem trees and provides a reference for exploring other valuable natural product biosynthesis in plants.


2020 ◽  
Author(s):  
Huiyan Wang ◽  
Ning Wang ◽  
Yixin Huo

Abstract Background: Azadirachtin A is a triterpenoid from neem tree exhibiting excellent activities against over 600 insect species in agriculture. The production of azadirachtin A depends on extraction from neem tissues, which is not an eco-friendly and sustainable process. The low yield and discontinuous supply of azadirachtin A impedes further applications. The biosynthetic pathway of azadirachtin A is still unknown and is the focus of our study. Results: We attempted to explore azadirachtin A biosynthetic pathway and identified the key genes involved by analyzing transcriptome data from five neem tissues through the hybrid-sequencing (Illumina HiSeq and Pacific Biosciences Single Molecule Real-Time (SMRT)) approach. Candidates were first screened by comparing the expression levels between the five tissues. After phylogenetic analysis, domain prediction, and molecular docking studies, 22 candidates encoding 2,3-oxidosqualene cyclase (OSC), alcohol dehydrogenase, cytochrome P450 (CYP450), acyltransferase, and esterase were proposed to be potential genes involved in azadirachtin A biosynthesis. Among them, two unigenes encoding homologs of MaOSC1 and MaCYP71CD2 were identified. A unigene encoding the complete homolog of MaCYP71BQ5 was reported. Accuracy of the assembly was verified by quantitative real-time PCR (qRT-PCR) and full-length PCR cloning. Conclusions: By integrating and analyzing transcriptome data from hybrid-seq technology, 22 differentially expressed genes (DEGs) were finally selected as candidates involved in azadirachtin A pathway. The obtained reliable and accurate sequencing data provided important novel information for understanding neem genome. Our data shed new light on understanding the biosynthesis of other triterpenoids in neem trees and provides a reference for exploring other valuable natural product biosynthesis in plants.


2020 ◽  
Vol 245 (18) ◽  
pp. 1672-1682
Author(s):  
Ji-Bing He ◽  
Miao-Jie Fang ◽  
Xin-Yi Ma ◽  
Wen-Jie Li ◽  
Ding-Sheng Lin

Random skin flaps are widely used to repair tissue defects. However, the distal flap regions are prone to ischemic necrosis, limiting clinical applications. Azadirachtin A, a fruit extract from the neem, improves tissue blood supply and metabolism, reduces cell swelling, promotes tissue healing, and prevents venous thrombosis. We explored whether it enhances random skin flap survival. Fifty-four Sprague-Dawley rats were divided into control, low-dose, and high-dose Azadirachtin A-treated groups using a random number table. We used an improved version of the McFarlane technique to create flaps. On day 2, superoxide dismutase and malondialdehyde levels were measured. Tissue slices prepared on day 7 were stained with hematoxylin and eosin. The expression levels of vascular endothelial growth factor (VEGF), toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-kB), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were immunohistochemically assayed. Microcirculatory blood flow was measured via laser Doppler blood flowmetry. Flap angiography was performed using the lead-oxide gelatin injection technique. And the azadirachtin A groups exhibited a greater mean flap survival area, an improved mean blood vessel density, a greater blood flow, and higher superoxide dismutase and VEGF levels, especially at the high dose. Azadirachtin A markedly reduced the levels of TNF-α, IL-6, IL-1β, TLR4, and NF-kB. These findings suggest that azadirachtin A promotes random skin flap survival by improving the blood supply, reducing tissue inflammation, and inhibiting flap ischemia reperfusion injury.


2020 ◽  
Author(s):  
Huiyan Wang ◽  
Ning Wang ◽  
Yixin Huo

Abstract Background: Azadirachtin A is a triterpenoid from neem tree exhibiting excellent activities against over 600 insect species in agriculture. The production of azadirachtin A depends on extraction from neem tissues, which is not an eco-friendly and sustainable process. The low yield and discontinuous supply of azadirachtin A impedes further applications. The biosynthetic pathway of azadirachtin A is still unknown and is the focus of our study. Results: We attempted to explore azadirachtin A biosynthetic pathway and identified the key genes involved by analyzing transcriptome data from five neem tissues through the hybrid-sequencing (Illumina HiSeq and Pacific Biosciences Single Molecule Real-Time (SMRT)) approach. Candidates were first screened by comparing the expression levels between the five tissues. After phylogenetic analysis, domain prediction, and molecular docking studies, 22 candidates encoding 2,3-oxidosqualene cyclase (OSC), alcohol dehydrogenase, cytochrome P450 (CYP450), acyltransferase, and esterase were proposed to be potential genes involved in azadirachtin A biosynthesis. Among them, two unigenes encoding homologs of MaOSC1 and MaCYP71CD2 were identified. A unigene encoding the complete homolog of MaCYP71BQ5 was reported. Accuracy of the assembly was verified by quantitative real-time PCR (qRT-PCR) and full-length PCR cloning. Conclusions: By integrating and analyzing transcriptome data from hybrid-seq technology, 22 differentially expressed genes (DEGs) were finally selected as candidates involved in azadirachtin A pathway. The obtained reliable and accurate sequencing data provided important novel information for understanding neem genome. Our data shed new light on understanding the biosynthesis of other triterpenoids in neem trees and provides a reference for exploring other valuable natural product biosynthesis in plants.


2020 ◽  
Author(s):  
Huiyan Wang ◽  
Ning Wang ◽  
Yixin Huo

Abstract Background: Azadirachtin A is a triterpenoid from neem tree exhibiting excellent activities against over 600 insect species in agriculture. The production of azadirachtin A depends on extraction from neem tissues, which is not an eco-friendly and sustainable process. The low yield and discontinuous supply of azadirachtin A impedes further applications. The biosynthetic pathway of azadirachtin A is still unknown and is the focus of our study. Results: We attempted to explore azadirachtin A biosynthetic pathway and identified the key genes involved by analyzing transcriptome data from five neem tissues through the hybrid-sequencing (Illumina HiSeq and Pacific Biosciences Single Molecule Real-Time (SMRT)) approach. Candidates were first screened by comparing the expression levels between the five tissues. After phylogenetic analysis, domain prediction, and molecular docking studies, 22 candidates encoding 2,3-oxidosqualene cyclase (OSC), alcohol dehydrogenase, cytochrome P450 (CYP450), acyltransferase, and esterase were proposed to be potential genes involved in azadirachtin A biosynthesis. Among them, two unigenes encoding homologs of MaOSC1 and MaCYP71CD2 were identified. A unigene encoding the complete homolog of MaCYP71BQ5 was reported. Accuracy of the assembly was verified by quantitative real-time PCR (qRT-PCR) and full-length PCR cloning. Conclusions: By integrating and analyzing transcriptome data from hybrid-seq technology, 22 differentially expressed genes (DEGs) were finally selected as candidates involved in azadirachtin A pathway. The obtained reliable and accurate sequencing data provided important novel information for understanding neem genome. Our data shed new light on understanding the biosynthesis of other triterpenoids in neem trees and provides a reference for exploring other valuable natural product biosynthesis in plants.


2020 ◽  
Author(s):  
Huiyan Wang ◽  
Ning Wang ◽  
Yixin Huo

Abstract Background: Azadirachtin A is a triterpenoid from neem tree exhibiting excellent activities against over 600 insect species in agriculture. The manufacture of azadirachtin A depends on extraction from neem tissues, which is not ecofriendly and sustainable. The low yield and discontinuous supply impeded the further application. The biosynthetic pathway of azadirachtin A is still unknown. Results: We attempted to explore azadirachtin A biosynthetic pathway and identified key involved genes by analyzing transcriptome data of five neem tissues through hybrid-seq (Illumina HiSeq and Pacific Biosciences Single Molecule Real Time (PacBio SMRT)) approach. Candidates were firstly screened by comparing expression level within five tissues. After phylogenetic analysis, domain prediction and molecular docking, 22 candidates encoding 2,3-oxidosqualene cyclase (OSC), alcohol dehydrogenase (ADH), cytochrome P450 (CYP450), acyltransferase (ACT) and esterase (EST) were proposed to be potential genes involved in azadirachtin A biosynthesis. Among them, two unigenes encoding homolog of MaOCS1 and MaCYP71CD2 were identified. An unigene encoding complete homolog of MaCYP71BQ5 was first reported. Accuracy of the assemblies were verified by Quantitative Real-Time PCR (qRT-PCR) and full-length cloning PCR. Conclusions: By integrating and analysis transcriptome data from hybrid-seq technology, 22 DEGs were finally selected as candidates involved in azadirachtin A pathway. The obtained reliable and accurate sequencing data provided important novel information for understanding neem genome. Our data shed new light on the understanding of other triterpenoids biosynthesis in neem trees and provide reference for exploring other valuable natural product biosynthesis in plants.


2020 ◽  
Author(s):  
Huiyan Wang ◽  
Ning Wang ◽  
Yixin Huo

Abstract Background: Azadirachtin A is a triterpenoid from neem tree exhibiting excellent activities against over 600 insect species in agriculture. The manufacture of azadirachtin A depends on extraction from neem tissues, which is not ecofriendly and sustainable. The low yield and discontinuous supply impeded the further application. The biosynthetic pathway of azadirachtin A is still well-known.Results: We attempted to explore azadirachtin A biosynthetic pathway and identified key involved genes by analyzing transcriptome data of five neem tissues through hybrid-seq (Illumina HiSeq and Pacific Biosciences Single Molecule Real Time (PacBio SMRT)) technology. A total 219 and 397 up-regulated differentially expressed genes (DEGs) in leaf and fruit tissues than other tissues (root, stem and flower) were isolated. After phylogenetic analysis and domain prediction, 22 candidates encoding 2,3-oxidosqualene cyclase (OSC), alcohol dehydrogenase (ADH), cytochrome P450 (CYP450), acyltransferase (ACT) and esterase (EST) proposed to be involved in azadirachtin A biosynthesis were finally selected. De novo assembled sequences were verified by Quantitative Real-Time PCR (qRT-PCR) analysis.Conclusions: By integrating and analysis data from Illumina HiSeq and PacBio SMRT platform, 22 DEGs were finally selected as candidates involved in azadirachtin A biosynthesis. The obtained reliable and accurate sequencing data provided important novel information for understanding neem genome. Our data shed new light on the understanding of other triterpenoids biosynthesis in neem trees and provide reference for exploring other valuable natural product biosynthesis in plants.


Sign in / Sign up

Export Citation Format

Share Document