downlink capacity
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
Donát Scharnitzky ◽  
Zsolt Krämer ◽  
Sándor Molnár

Abstract 5G cellular networks have introduced a completely novel air interface called New Radio (NR). This technology delivers numerous benefits compared to previous generations, including significantly higher peak data rates. However, due to the propagation properties of the frequencies used in NR, the volatility of the available downlink capacity also increases. In this paper, we study two TCP congestion control algorithms which are designed to be able to quickly utilize sudden increases in available capacity. We present an implementation of TCP SIAD in the ns-3 open source network simulator and compare its performance with TCP BBR using the mmWave module of the simulator.


2021 ◽  
Author(s):  
Joydev Ghosh

<div>This research work explores small cell densification as a key technique for next generation wireless network (NGWN). Small cell densification comprises space (i.e, dense deployment of femtocells) and spectrum (i.e., utilization of frequency band at large). The usage of femtocells not only improves the spectral efficiency (SE) of the Heterogeneous two-tier networks against conventional approach, but also it alleviates outage probability and enhances the achievable capacity. We yield an analytical framework to establish the density of the femto base station (FBS) to a monotonically increasing or decreasing function of distance or radius, respectively. This ensures the enhanced performance in spectrum sharing Orthogonal Frequency Division Multiple Access (OFDMA) femtocell network models. We also illustrate the influence of active Femto users (i.e., users in femtocells, and they are usually low mobility and located closer to the cell centre with less fading), cluster size (i.e., a group of adjacent macrocells which use all of the systems frequency assignments) via simulation results.</div>


2021 ◽  
Author(s):  
Joydev Ghosh

<div>This research work explores small cell densification as a key technique for next generation wireless network (NGWN). Small cell densification comprises space (i.e, dense deployment of femtocells) and spectrum (i.e., utilization of frequency band at large). The usage of femtocells not only improves the spectral efficiency (SE) of the Heterogeneous two-tier networks against conventional approach, but also it alleviates outage probability and enhances the achievable capacity. We yield an analytical framework to establish the density of the femto base station (FBS) to a monotonically increasing or decreasing function of distance or radius, respectively. This ensures the enhanced performance in spectrum sharing Orthogonal Frequency Division Multiple Access (OFDMA) femtocell network models. We also illustrate the influence of active Femto users (i.e., users in femtocells, and they are usually low mobility and located closer to the cell centre with less fading), cluster size (i.e., a group of adjacent macrocells which use all of the systems frequency assignments) via simulation results.</div>


2020 ◽  
Vol 12 (23) ◽  
pp. 3941
Author(s):  
Ji Hyun Park ◽  
Takaya Inamori ◽  
Ryuhei Hamaguchi ◽  
Kensuke Otsuki ◽  
Jung Eun Kim ◽  
...  

Nanosatellites are being widely used in various missions, including remote sensing applications. However, the difficulty lies in mission operation due to downlink speed limitation in nanosatellites. Considering the global cloud fraction of 67%, retrieving clear images through the limited downlink capacity becomes a larger issue. In order to solve this problem, we propose an image prioritization method based on cloud coverage using CNN. The CNN is designed to be lightweight and to be able to prioritize RGB images for nanosatellite application. As previous CNNs are too heavy for onboard processing, new strategies are introduced to lighten the network. The input size is reduced, and patch decomposition is implemented for reduced memory usage. Replication padding is applied on the first block to suppress border ambiguity in the patches. The depth of the network is reduced for small input size adaptation, and the number of kernels is reduced to decrease the total number of parameters. Lastly, a multi-stream architecture is implemented to suppress the network from optimizing on color features. As a result, the number of parameters was reduced down to 0.4%, and the inference time was reduced down to 4.3% of the original network while maintaining approximately 70% precision. We expect that the proposed method will enhance the downlink capability of clear images in nanosatellites by 112%.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 418
Author(s):  
Peng Zhang ◽  
Frans M. J. Willems

We investigate the downlink of a cell-free massive multiple-in multiple-out system in which all access points (APs) are connected in a linear-topolpgy fronthaul with constrained capacity and send a common message to a single receiver. By modeling the system as an extension of the multiple-access channel with partially cooperating encoders, we derive the channel capacity of the two-AP setting and then extend the results to arbitrary N-AP scenarios. By developing a cooperating mode concept, we investigate the optimal cooperation among the encoders (APs) when we limit the total fronthaul capacity, and the total transmit power is constrained as well. It is demonstrated that achieving capacity requires a water-pouring distribution of the total available fronthaul capacity over the fronthaul links. Our study reveals that a linear growth of total fronthaul capacity results in a logarithmic growth of the beamforming capacity. Moreover, even if the number of APs would be unlimited, only a finite number of them need to be activated. We found an expression for this number.


2018 ◽  
Vol 29 ◽  
pp. 329-335 ◽  
Author(s):  
Joydev Ghosh ◽  
Dushantha Nalin K. Jayakody ◽  
Marwa Qaraqe

Sign in / Sign up

Export Citation Format

Share Document