scholarly journals RGB Image Prioritization Using Convolutional Neural Network on a Microprocessor for Nanosatellites

2020 ◽  
Vol 12 (23) ◽  
pp. 3941
Author(s):  
Ji Hyun Park ◽  
Takaya Inamori ◽  
Ryuhei Hamaguchi ◽  
Kensuke Otsuki ◽  
Jung Eun Kim ◽  
...  

Nanosatellites are being widely used in various missions, including remote sensing applications. However, the difficulty lies in mission operation due to downlink speed limitation in nanosatellites. Considering the global cloud fraction of 67%, retrieving clear images through the limited downlink capacity becomes a larger issue. In order to solve this problem, we propose an image prioritization method based on cloud coverage using CNN. The CNN is designed to be lightweight and to be able to prioritize RGB images for nanosatellite application. As previous CNNs are too heavy for onboard processing, new strategies are introduced to lighten the network. The input size is reduced, and patch decomposition is implemented for reduced memory usage. Replication padding is applied on the first block to suppress border ambiguity in the patches. The depth of the network is reduced for small input size adaptation, and the number of kernels is reduced to decrease the total number of parameters. Lastly, a multi-stream architecture is implemented to suppress the network from optimizing on color features. As a result, the number of parameters was reduced down to 0.4%, and the inference time was reduced down to 4.3% of the original network while maintaining approximately 70% precision. We expect that the proposed method will enhance the downlink capability of clear images in nanosatellites by 112%.

Author(s):  
J.-Y. Rau ◽  
J.-P. Jhan ◽  
C.-Y Huang

Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a <b>modified projective transformation</b> (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at the same exposure time will have same interior orientation parameters (IOPs) and exterior orientation parameters (EOPs) after band-to-band registration (BBR). Thus, in the aerial triangulation stage, the master band of MiniMCA-12 was treated as a reference channel to link with DSLR RGB images. It means, all reference images from the master band of MiniMCA-12 and all RGB images were triangulated at the same time with same coordinate system of ground control points (GCP). Due to the spatial resolution of RGB images is higher than the MiniMCA-12, the GCP can be marked on the RGB images only even they cannot be recognized on the MiniMCA images. Furthermore, a one meter gridded digital surface model (DSM) is created by the RGB images and applied to the MiniMCA imagery for ortho-rectification. Quantitative error analyses show that the proposed BBR scheme can achieve 0.33 pixels of average misregistration residuals length and the co-registration errors among 12 MiniMCA ortho-images and between MiniMCA and Canon RGB ortho-images are all less than 0.6 pixels. The experimental results demonstrate that the proposed method is robust, reliable and accurate for future remote sensing applications.


1986 ◽  
Vol 1 (4) ◽  
pp. 3-15 ◽  
Author(s):  
Deborah A. Kuchler ◽  
David L.B. Jupp ◽  
Daniel B. van R. Claasen ◽  
William Bour

1997 ◽  
Vol 08 (01) ◽  
pp. 179-231 ◽  
Author(s):  
Alistair Moffat ◽  
Timothy C. Bell ◽  
Ian H. Witten

Most data that is inherently discrete needs to be compressed in such a way that it can be recovered exactly, without any loss. Examples include text of all kinds, experimental results, and statistical databases. Other forms of data may need to be stored exactly, such as images—particularly bilevel ones, or ones arising in medical and remote-sensing applications, or ones that may be required to be certified true for legal reasons. Moreover, during the process of lossy compression, many occasions for lossless compression of coefficients or other information arise. This paper surveys techniques for lossless compression. The process of compression can be broken down into modeling and coding. We provide an extensive discussion of coding techniques, and then introduce methods of modeling that are appropriate for text and images. Standard methods used in popular utilities (in the case of text) and international standards (in the case of images) are described.


Sign in / Sign up

Export Citation Format

Share Document