dimension number
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Henry Garrett

New notion of dimension as set, as two optimal numbers including metric number, dimension number and as optimal set are introduced in individual framework and in formation of family. Behaviors of twin and antipodal are explored in fuzzy(neutrosophic) graphs. Fuzzy(neutrosophic) graphs, under conditions, fixed-edges, fixed-vertex and strong fixed-vertex are studied. Some classes as path, cycle, complete, strong, t-partite, bipartite, star and wheel in the formation of individual case and in the case, they form a family are studied in the term of dimension. Fuzzification(neutrosofication) of twin vertices but using crisp concept of antipodal vertices are another approaches of this study. Thus defining two notions concerning vertices which one of them is fuzzy(neutrosophic) titled twin and another is crisp titled antipodal to study the behaviors of cycles which are partitioned into even and odd, are concluded. Classes of cycles according to antipodal vertices are divided into two classes as even and odd. Parity of the number of edges in cycle causes to have two subsections under the section is entitled to antipodal vertices. In this study, the term dimension is introduced on fuzzy(neutrosophic) graphs. The locations of objects by a set of some junctions which have distinct distance from any couple of objects out of the set, are determined. Thus it’s possible to have the locations of objects outside of this set by assigning partial number to any objects. The classes of these specific graphs are chosen to obtain some results based on dimension. The types of crisp notions and fuzzy(neutrosophic) notions are used to make sense about the material of this study and the outline of this study uses some new notions which are crisp and fuzzy(neutrosophic). Some questions and problems are posed concerning ways to do further studies on this topic. Basic familiarities with fuzzy(neutrosophic) graph theory and graph theory are proposed for this article.


Author(s):  
Henry Garrett

New notion of dimension as set, as two optimal numbers including metric number, dimension number and as optimal set are introduced in individual framework and in formation of family. Behaviors of twin and antipodal are explored in fuzzy(neutrosophic) graphs. Fuzzy(neutrosophic) graphs, under conditions, fixed-edges, fixed-vertex and strong fixed-vertex are studied. Some classes as path, cycle, complete, strong, t-partite, bipartite, star and wheel in the formation of individual case and in the case, they form a family are studied in the term of dimension. Fuzzification(neutrosofication) of twin vertices but using crisp concept of antipodal vertices are another approaches of this study. Thus defining two notions concerning vertices which one of them is fuzzy(neutrosophic) titled twin and another is crisp titled antipodal to study the behaviors of cycles which are partitioned into even and odd, are concluded. Classes of cycles according to antipodal vertices are divided into two classes as even and odd. Parity of the number of edges in cycle causes to have two subsections under the section is entitled to antipodal vertices. In this study, the term dimension is introduced on fuzzy(neutrosophic) graphs. The locations of objects by a set of some junctions which have distinct distance from any couple of objects out of the set, are determined. Thus it’s possible to have the locations of objects outside of this set by assigning partial number to any objects. The classes of these specific graphs are chosen to obtain some results based on dimension. The types of crisp notions and fuzzy(neutrosophic) notions are used to make sense about the material of this study and the outline of this study uses some new notions which are crisp and fuzzy(neutrosophic).


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Hassan-Ali Hakemi ◽  

In this work, the experimental data on flexible PDLC films at the industrial scale and the effect of cure temperature (Tc) on the morphology and electro-optical properties of a UV-cured PDLC system via polymer-induced phase separation (PIPS) method were studied. Under constant UV radiation intebsity and thickness, the morphological parameters such as dimension, number density, and volume fraction of the phase-separated liquid crystal droplets as well as the optical transmissions and switching voltages as a function of cure temperature were determined. The effect of cure temperature on the morphology and electro-optical properties of UV-cured PDLC films were analyzed.


2020 ◽  
Vol 34 (05) ◽  
pp. 7610-7617
Author(s):  
Biyun Dai ◽  
Jinlong Li ◽  
Ruoyi Xu

Self-attention mechanisms have recently caused many concerns on Natural Language Processing (NLP) tasks. Relative positional information is important to self-attention mechanisms. We propose Faraway Mask focusing on the (2m + 1)-gram words and Scaled-Distance Mask putting the logarithmic distance punishment to avoid and weaken the self-attention of distant words respectively. To exploit different masks, we present Positional Self-Attention Layer for generating different Masked-Self-Attentions and a following Position-Fusion Layer in which fused positional information multiplies the Masked-Self-Attentions for generating sentence embeddings. To evaluate our sentence embeddings approach Multiple Positional Self-Attention Network (MPSAN), we perform the comparison experiments on sentiment analysis, semantic relatedness and sentence classification tasks. The result shows that our MPSAN outperforms state-of-the-art methods on five datasets and the test accuracy is improved by 0.81%, 0.6% on SST, CR datasets, respectively. In addition, we reduce training parameters and improve the time efficiency of MPSAN by lowering the dimension number of self-attention and simplifying fusion mechanism.


2018 ◽  
Vol 10 (5) ◽  
Author(s):  
Ting-Li Yang ◽  
Anxin Liu ◽  
Huiping Shen ◽  
Lubin Hang ◽  
Qiaode Jeffery Ge

Based on the general degree-of-freedom (DOF) formula for spatial mechanisms proposed by the author in 2012, the early single open chain (SOC)-based composition principle for planar mechanisms is extended to general spatial mechanisms in this paper. First, three types of existing mechanism composition principle and their characteristics are briefly discussed. Then, the SOC-based composition principle for general spatial mechanisms is introduced. According to this composition principle, a spatial mechanism is first decomposed into Assur kinematic chains (AKCs) and an AKC is then further decomposed into a group of ordered SOCs. Kinematic (dynamic) analysis of a spatial mechanism can then be reduced to kinematic (dynamic) analysis of AKCs and finally to kinematic (dynamic) analysis of ordered SOCs. The general procedure for decomposing the mechanism into ordered SOCs and the general method for determining AKC(s) contained in the mechanism are also given. Mechanism's kinematic (dynamic) analysis can be reduced to the lowest dimension (number of unknowns) directly at the topological structure level using the SOC-based composition principle. The SOC-based composition principle provides a theoretical basis for the establishment of a unified SOC-based method for structure synthesis and kinematic (dynamic) analysis of general spatial mechanisms.


2018 ◽  
Vol 916 ◽  
pp. 207-211 ◽  
Author(s):  
Manolo G. Mena

Dendrites were observed in the failure of semiconductor sensor devices. EDX analysis showed that the dendrites grown from bare sensor dice consisted of tin metal. The tin dendrites exhibited massive and dense branches. Dendrites grown from mechanically decapped parts consisted of silver. The silver dendrites exhibited delicate, lace-like structure. Binary and grey scale images of dendrites were analyzed for fractal dimension number and branch density. The tin dendrites had a higher, statistically significant branch density number than silver, due to tin’s more intricate branching pattern. Fractal numbers can be used to differentiate between tin and silver dendrites, even in the absence of EDX analysis equipment.


Author(s):  
Mohammad Mehdi Alemi ◽  
Saied Taheri ◽  
Mehdi Ahmadian

The primary purpose of this study is to use a nano-scale optical surface profilometer to assess the feasibility of such instruments in measuring localized friction coefficient on railways, beyond what can be commonly measured by tribometers used by the railroad industry. One of the important aspects of moving freight and passengers on railways is the ability to manage and control the friction between the rails and wheels. Creating a general friction model is a challenging task because friction is influenced by various factors such as surface metrology, properties of materials in contact, surface contamination, flash temperature, normal load, sliding velocity, surface deformation, inter-surface adhesion, etc. With an increase in the number of influencing factors, the complexity of the friction model also increases. Therefore, reliable prediction of the friction, both theoretically and empirically, is sensitive to how the model parameters are measured. In this study, the surface characteristics of four rail sections are measured at 20 microns over a rectangular area using a portable Nanovea JR25 optical surface profilometer and the results were studied using various statistical procedures and Fractal theory. Furthermore, a 2D rectangular area was measured in this study because 1D height profile doesn’t capture all the necessary statistical properties of the surface. For surface roughness characterization, the 3D parameters such as root-mean-square (RMS) height, skewness, kurtosis and other important parameters are obtained according to ISO 25178 standard. To verify the statistical results and fractal analysis, a British Pendulum Skid Resistance Tester is used to measure the average sliding coefficients of friction based on several experiments over a 5 cm contact length for the four rail sections selected for the tests. The results indicate that rail surfaces with lower fractal dimension number have a lower friction. The larger fractal dimension number appears to be directly proportional to larger microtexture features, which potentially increase friction.


2015 ◽  
Vol 799-800 ◽  
pp. 942-946
Author(s):  
Yuan Peng Liu ◽  
Xin Yin ◽  
Min Wang

The friction welded joints made by GH4169 heat metal alloys are detected by U1traPAC system of the ultrasonic wave explore instrument. Aimed at the blemish signal characteristics, a method is put forward to identify the blemish signal in ultrasonic testing of friction welded joints based on fractal theory., A new kind of fractal dimension number calculation method—normalized scale box-counting dimension method is used to calculate the box-dimension of the blemish signal, and statistic and analysis the scopes of the box-dimension of the blemish signal and the square differ of the result. The preliminary experimental results show that the blemish signal and have each fractal dimension zones, and don’t hand over to fold. So it can use to judge whether the blemish exist or not. The method is identified to have better covariance characteristics about the blemish identify of the friction welded joints.


Sign in / Sign up

Export Citation Format

Share Document