neutrosophic graph
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 27)

H-INDEX

7
(FIVE YEARS 3)

2022 ◽  
Vol 130 (1) ◽  
pp. 559-580
Author(s):  
S. Satham Hussain ◽  
G. Muhiuddin ◽  
N. Durga ◽  
D. Al-Kadi

Author(s):  
Henry Garrett

New setting is introduced to study chromatic number. Different types of chromatic numbers and neutrosophic chromatic number are proposed in this way, some results are obtained. Classes of neutrosophic graphs are used to obtains these numbers and the representatives of the colors. Using colors to assign to the vertices of neutrosophic graphs is applied. Some questions and problems are posed concerning ways to do further studies on this topic. Using different types of edges from connectedness in same neutrosophic graphs and in modified neutrosophic graphs to define the relation amid vertices which implies having different colors amid them and as consequences, choosing one vertex as a representative of each color to use them in a set of representatives and finally, using neutrosophic cardinality of this set to compute types of chromatic numbers. This specific relation amid edges is necessary to compute both types of chromatic number concerning the number of representative in the set of representatives and types of neutrosophic chromatic number concerning neutrosophic cardinality of set of representatives. If two vertices have no intended edge, then they can be assigned to same color even they’ve common edge. Basic familiarities with neutrosophic graph theory and graph theory are proposed for this article.


Author(s):  
Henry Garrett

New setting is introduced to study chromatic number. vital chromatic number and n-vital chromatic number are proposed in this way, some results are obtained. Classes of neutrosophic graphs are used to obtains these numbers and the representatives of the colors. Using colors to assign to the vertices of neutrosophic graphs is applied. Some questions and problems are posed concerning ways to do further studies on this topic. Using vital edge from connectedness to define the relation amid vertices which implies having different colors amid them and as consequences, choosing one vertex as a representative of each color to use them in a set of representatives and finally, using neutrosophic cardinality of this set to compute vital chromatic number. This specific relation amid edges is necessary to compute both vital chromatic number concerning the number of representative in the set of representatives and n-vital chromatic number concerning neutrosophic cardinality of set of representatives. If two vertices have no vital edge, then they can be assigned to same color even they’ve common edge. Basic familiarities with neutrosophic graph theory and graph theory are proposed for this article.


Author(s):  
Henry Garrett

New setting is introduced to study chromatic number. Neutrosophic chromatic number and chromatic number are proposed in this way, some results are obtained. Classes of neutrosophic graphs are used to obtains these numbers and the representatives of the colors. Using colors to assigns to the vertices of neutrosophic graphs is applied. Some questions and problems are posed concerning ways to do further studies on this topic. Using strong edge to define the relation amid vertices which implies having different colors amid them and as consequences, choosing one vertex as a representative of each color to use them in a set of representatives and finally, using neutrosophic cardinality of this set to compute neutrosophic chromatic number. This specific relation amid edges is necessary to compute both chromatic number concerning the number of representative in the set of representatives and neutrosophic chromatic number concerning neutrosophic cardinality of set of representatives. If two vertices have no strong edge, then they can be assigned to same color even they’ve common edge. Basic familiarities with neutrosophic graph theory and graph theory are proposed for this article.


Author(s):  
Henry Garrett

New notion of dimension as set, as two optimal numbers including metric number, dimension number and as optimal set are introduced in individual framework and in formation of family. Behaviors of twin and antipodal are explored in fuzzy(neutrosophic) graphs. Fuzzy(neutrosophic) graphs, under conditions, fixed-edges, fixed-vertex and strong fixed-vertex are studied. Some classes as path, cycle, complete, strong, t-partite, bipartite, star and wheel in the formation of individual case and in the case, they form a family are studied in the term of dimension. Fuzzification(neutrosofication) of twin vertices but using crisp concept of antipodal vertices are another approaches of this study. Thus defining two notions concerning vertices which one of them is fuzzy(neutrosophic) titled twin and another is crisp titled antipodal to study the behaviors of cycles which are partitioned into even and odd, are concluded. Classes of cycles according to antipodal vertices are divided into two classes as even and odd. Parity of the number of edges in cycle causes to have two subsections under the section is entitled to antipodal vertices. In this study, the term dimension is introduced on fuzzy(neutrosophic) graphs. The locations of objects by a set of some junctions which have distinct distance from any couple of objects out of the set, are determined. Thus it’s possible to have the locations of objects outside of this set by assigning partial number to any objects. The classes of these specific graphs are chosen to obtain some results based on dimension. The types of crisp notions and fuzzy(neutrosophic) notions are used to make sense about the material of this study and the outline of this study uses some new notions which are crisp and fuzzy(neutrosophic). Some questions and problems are posed concerning ways to do further studies on this topic. Basic familiarities with fuzzy(neutrosophic) graph theory and graph theory are proposed for this article.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 172
Author(s):  
Siti Nurul Fitriah Mohamad ◽  
Roslan Hasni ◽  
Florentin Smarandache ◽  
Binyamin Yusoff

The energy of a graph is defined as the sum of the absolute values of its eigenvalues. Recently, there has been a lot of interest in graph energy research. Previous literature has suggested integrating energy, Laplacian energy, and signless Laplacian energy with single-valued neutrosophic graphs (SVNGs). This integration is used to solve problems that are characterized by indeterminate and inconsistent information. However, when the information is endowed with both positive and negative uncertainty, then bipolar single-valued neutrosophic sets (BSVNs) constitute an appropriate knowledge representation of this framework. A BSVNs is a generalized bipolar fuzzy structure that deals with positive and negative uncertainty in real-life problems with a larger domain. In contrast to the previous study, which directly used truth and indeterminate and false membership, this paper proposes integrating energy, Laplacian energy, and signless Laplacian energy with BSVNs to graph structure considering the positive and negative membership degree to greatly improve decisions in certain problems. Moreover, this paper intends to elaborate on characteristics of eigenvalues, upper and lower bound of energy, Laplacian energy, and signless Laplacian energy. We introduced the concept of a bipolar single-valued neutrosophic graph (BSVNG) for an energy graph and discussed its relevant ideas with the help of examples. Furthermore, the significance of using bipolar concepts over non-bipolar concepts is compared numerically. Finally, the application of energy, Laplacian energy, and signless Laplacian energy in BSVNG are demonstrated in selecting renewable energy sources, while optimal selection is suggested to illustrate the proposed method. This indicates the usefulness and practicality of this proposed approach in real life.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Sami Ullah Khan ◽  
Abdul Nasir ◽  
Naeem Jan ◽  
Zhen-Hua Ma

Neutrosophic graph (NG) is a powerful tool in graph theory, which is capable of modeling many real-life problems with uncertainty due to unclear, varying, and indeterminate information. Meanwhile, the fuzzy graphs (FGs) and intuitionistic fuzzy graphs (IFGs) may not handle these problems as efficiently as NGs. It is difficult to model uncertainty due to imprecise information and vagueness in real-world scenarios. Many real-life optimization problems are modeled and solved using the well-known fuzzy graph theory. The concepts of covering, matching, and paired domination play a major role in theoretical and applied neutrosophic environments of graph theory. Henceforth, the current study covers this void by introducing the notions of covering, matching, and paired domination in single-valued neutrosophic graph (SVNG) using the strong edges. Also, many attention-grabbing properties of these concepts are studied. Moreover, the strong covering number, strong matching number, and the strong paired domination number of complete SVNG, complete single-valued neutrosophic cycle (SVNC), and complete bipartite SVNG are worked out along with their fascinating properties.


Author(s):  
Tejinder Singh Lakhwani ◽  
Kartick Mohanta ◽  
Arindam Dey ◽  
Sankar Prasad Mondal ◽  
Anita Pal
Keyword(s):  

Author(s):  
M. Abu Saleem

The main aim of this article is to present neutrosophic folding and neutrosophic retractions on a single-valued neutrosophic graph Ğ from the viewpoint of geometry and topology. For this reason, we use a sequence of neutrosophic transformations on Ğ to obtain a new single-valued neutrosophic graph G ˇ 1 which contains different parameters under new conditions. We deduce the isometric neutrosophic folding on neutrosophic spheres and neutrosophic torii. Also, we determine the relationship between the limit neutrosophic folding and the limit of neutrosophic retraction on Ğ. Theorems regulating these relations are attained.


Sign in / Sign up

Export Citation Format

Share Document