loop constraints
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Qinglin Yang

Abstract We comment on the status of “Steinmann-like” constraints, i.e. all-loop constraints on consecutive entries of the symbol of scattering amplitudes and Feynman integrals in planar $$ \mathcal{N} $$ N = 4 super-Yang-Mills, which have been crucial for the recent progress of the bootstrap program. Based on physical discontinuities and Steinmann relations, we first summarize all possible double discontinuities (or first-two-entries) for (the symbol of) amplitudes and integrals in terms of dilogarithms, generalizing well-known results for n = 6, 7 to all multiplicities. As our main result, we find that extended-Steinmann relations hold for all finite integrals that we have checked, including various ladder integrals, generic double-pentagon integrals, as well as finite components of two-loop NMHV amplitudes for any n; with suitable normalization such as minimal subtraction, they hold for n = 8 MHV amplitudes at three loops. We find interesting cancellation between contributions from rational and algebraic letters, and for the former we have also tested cluster-adjacency conditions using the so-called Sklyanin brackets. Finally, we propose a list of possible last-two-entries for MHV amplitudes up to 9 points derived from $$ \overline{Q} $$ Q ¯ equations, which can be used to reduce the space of functions for higher-point MHV amplitudes.


2020 ◽  
Author(s):  
◽  
Taiwei Wang

Establish consistent correspondences between different objects is a classic problem in computer science/vision. It helps to match highly similar objects in both 3D and 2D domain. Inthe 3D domain, finding consistent correspondences has been studying for more than 20 yearsand it is still a hot topic. In 2D domain, consistent correspondences can also help in puzzlesolving. However, only a few works are focused on this approach. In this thesis, we focuson finding consistent correspondences and extend to develop robust matching techniques inboth 3D shape segments and 2D puzzle solving. In the 3D domain, segment-wise matching isan important research problem that supports higher-level understanding of shapes in geometryprocessing. Many existing segment-wise matching techniques assume perfect input segmentation and would suffer from imperfect or over-segmented input. To handle this shortcoming,we propose multi-layer graphs (MLGs) to represent possible arrangements of partially mergedsegments of input shapes. We then adapt the diffusion pruning technique on the MLGs to findconsistent segment-wise matching. To obtain high-quality matching, we develop our own voting step which is able to remove inconsistent results, for finding hierarchically consistent correspondences as final output. We evaluate our technique with both quantitative and qualitativeexperiments on both man-made and deformable shapes. Experimental results demonstrate theeffectiveness of our technique when compared to two state-of-art methods. In the 2D domain,solving jigsaw puzzles is also a classic problem in computer vision with various applications.Over the past decades, many useful approaches have been introduced. Most existing worksuse edge-wise similarity measures for assembling puzzles with square pieces of the same size, and recent work innovates to use the loop constraint to improve efficiency and accuracy. Weobserve that most existing techniques cannot be easily extended to puzzles with rectangularpieces of arbitrary sizes, and no existing loop constraints can be used to model such challenging scenarios. We propose new matching approaches based on sub-edges/corners, modelledusing the MatchLift or diffusion framework to solve square puzzles with cycle consistency.We demonstrate the robustness of our approaches by comparing our methods with state-of-artmethods. We also show how puzzles with rectangular pieces of arbitrary sizes, or puzzles withtriangular and square pieces can be solved by our techniques.


2019 ◽  
Vol 41 (9) ◽  
pp. 2222-2235 ◽  
Author(s):  
Kilho Son ◽  
James Hays ◽  
David B. Cooper

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 165399-165410 ◽  
Author(s):  
Naoki Hyodo ◽  
Takehiro Sato ◽  
Ryoichi Shinkuma ◽  
Eiji Oki

Author(s):  
Márton Kuslits ◽  
Dieter Bestle

Multibody systems and associated equations of motion may be distinguished in many ways: holonomic and nonholonomic, linear and nonlinear, tree-structured and closed-loop kinematics, symbolic and numeric equations of motion. The present paper deals with a symbolic derivation of nonlinear equations of motion for nonholonomic multibody systems with closed-loop kinematics, where any generalized coordinates and velocities may be used for describing their kinematics. Loop constraints are taken into account by algebraic equations and Lagrange multipliers. The paper then focuses on the derivation of the corresponding linear equations of motion by eliminating the Lagrange multipliers and applying a computationally efficient symbolic linearization procedure. As demonstration example, a vehicle model with differential steering is used where validity of the approach is shown by comparing the behavior of the linearized equations with their nonlinear counterpart via simulations.


Robotica ◽  
2018 ◽  
Vol 36 (11) ◽  
pp. 1641-1663 ◽  
Author(s):  
Andreas Müller

SUMMARYModeling the instantaneous kinematics of lower pair linkages using joint screws and the finite kinematics with Lie group concepts is well established on a solid theoretical foundation. This allows for modeling the forward kinematics of mechanisms as well the loop closure constraints of kinematic loops. Yet there is no established approach to the modeling of complex mechanisms possessing multiple kinematic loops. For such mechanisms, it is crucial to incorporate the kinematic topology within the modeling in a consistent and systematic way. To this end, in this paper a kinematic model graph is introduced that gives rise to an ordering of the joints within a mechanism and thus allows to systematically apply established kinematics formulations. It naturally gives rise to topologically independent loops and thus to loop closure constraints. Geometric constraints as well as velocity and acceleration constraints are formulated in terms of joint screws. An extension to higher order loop constraints is presented. It is briefly discussed how the topology representation can be used to amend structural mobility criteria.


2014 ◽  
Vol 61 (2) ◽  
pp. 365-383 ◽  
Author(s):  
Andreas Müller

Abstract Redundant constraints in MBS models severely deteriorate the computational performance and accuracy of any numerical MBS dynamics simulation method. Classically this problem has been addressed by means of numerical decompositions of the constraint Jacobian within numerical integration steps. Such decompositions are computationally expensive. In this paper an elimination method is discussed that only requires a single numerical decomposition within the model preprocessing step rather than during the time integration. It is based on the determination of motion spaces making use of Lie group concepts. The method is able to reduce the set of loop constraints for a large class of technical systems. In any case it always retains a sufficient number of constraints. It is derived for single kinematic loops.


Sign in / Sign up

Export Citation Format

Share Document