terminal angle constraint
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 9)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
pp. 1-15
Author(s):  
Tuo Han ◽  
Qinglei Hu ◽  
Hyo-Sang Shin ◽  
Antonios Tsourdos ◽  
Ming Xin

Author(s):  
Peng Zhang ◽  
Xiaoyu Zhang

This paper introduces a fast fixed-time guidance law with terminal angle constraint for interception of maneuvering targets, which is based on the structure of singularity-free fast terminal sliding mode and the fixed-time stability theory. Different from the finite-time stability, the fixed-time stability can predefine the maximum stabilization time of system states which is independent on the initial value of system states. Under the proposed guidance law, the guidance system can achieve stabilization within settling time which decides by the parameters of controller. In addition, an adaptive law is proposed which alleviate the chattering of sliding mode and smooths the guidance law. Meanwhile, the proof of the sliding mode manifold and system states fixed-time convergence is given by Lyapunov stability theory. Finally, numerical simulations demonstrate the performance of the proposed guidance law is satisfying.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xin Wang ◽  
Xue Qiu

Aiming at the requirement that the guidance law should meet the minimum miss distance and the desired terminal angle at the same time, a sliding mode variable structure control method is introduced. In order to improve the fuzzy variable structure guidance law for maneuvering target attack effect, a neural network to the optimization design is carried out on the guidance law. The neural network is trained by the samples, which is under the condition of different error coefficient of angle, the coefficient of reaching law, and the coefficient of on-off item about target. Fuzzy neural sliding mode guidance law with terminal angle constraint can increase the performance of the large maneuvering target. In addition, on the basis of the traditional PC platform visual simulation system, a new guidance law simulation platform based on embedded system and virtual reality technology is formed. The platform can verify the validity of the guidance law.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Shizheng Wan ◽  
Xiaofei Chang ◽  
Quancheng Li ◽  
Jie Yan

For the problem of hypersonic target interception, a novel midcourse guidance method with terminal-angle constraint is proposed. Referring to the air-breathing and the boost-gliding hypersonic targets, flight characteristics and difficulties of interception are analyzed, respectively. The requirements of midcourse guidance for interceptors are provided additionally. The kinematics model of adversaries is established concerning line-of-sight coupling in longitudinal and lateral planes. Suboptimal guidance law with terminal-angle constraint, specifically the final line-of-sight angle or impact angle, is presented by means of model predictive static programming. The trajectory is optimized and the load factor would finally converge after penalizing control sequence and output deviations. The realization of terminal angle is firstly verified with a constant speed target. A full interception scenario is further simulated focusing on a typical boost-gliding target, which flies along a skipping trajectory. Results show the success of providing handover conditions for intercepting hypersonic targets.


Sign in / Sign up

Export Citation Format

Share Document