volcaniclastic succession
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 1)

2022 ◽  
pp. 104694
Author(s):  
Christina Stouraiti ◽  
Stylianos Lozios ◽  
Konstantinos Soukis ◽  
Constantinos Mavrogonatos ◽  
Harilaos Tsikos ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 34-39
Author(s):  
Kifayat Ullah Shah ◽  
Akhtar Muhammad Kassi ◽  
Aimal Khan Kasi

The newly proposed Middle Cretaceous “Bibai Group”, named after the Bibai peak, is exposed in Kach-Ziarat, Spera Ragha-Chingun areas of the Western Sulaiman Fold-Thrust Belt, Pakistan. It comprises thick succession of the mafic volcanic rocks, volcanic conglomerate, mudstone and sandstone. The stratigraphic nomenclature proposed by previous workers was not clear enough, as they used different names for the succession, such as “Kahan Conglomerate Member” of the Mughal Kot Formation, “Parh-related volcanics” by considering it as part of the “Parh Group, “Bibai Formation” and “Bela Volcanic Group”, which were confusing and misleading. Also previous workers did not realize that the succession may be further classified into distinct mappable lithostratigraphic units and deserved the status of a “Group”. Therefore, we carefully examined and mapped the area and hereby propose the name “Bibai Group” for the overall volcanic and volcaniclastic succession of the Middle Cretaceous age. Based on distinct lithostratigraphic characters we further subdivided the “Group” into two lithostratigraphic units of formation rank, for which we propose the names “Chinjun Volcanics” and “Bibai Formation”. Also based on distinct lithostratigraphic characters we further propose to subdivide our “Babai Formation” into three lithostratigraphic units of member rank, which we named as the “Kahan Conglomerate Member”, “Ahmadun Member” and “Kach Mudstone Member”. In this paper we have defined and briefly described the Bibai Group, its constituent formations and their members. Also we examined and discussed the validity and status of the proposed subdivisions; e.g. formations and members, of the Bibai Group, and are fully satisfied that the proposed subdivisions are appropriate and comply with the Article 24 and 25 of the North American Stratigraphic Codes (2005) and that the previous nomenclatures are inconsistent, confusing and do not comply with the International Stratigraphic Codes.


2018 ◽  
Vol 86 ◽  
pp. 475-496 ◽  
Author(s):  
M. Sol Raigemborn ◽  
Elisa Beilinson ◽  
J. Marcelo Krause ◽  
Augusto N. Varela ◽  
Eduardo Bellosi ◽  
...  

2018 ◽  
Vol 92 (5) ◽  
pp. 768-793 ◽  
Author(s):  
Juan L. Benedetto

AbstractThe Precordilleran species Ahtiella argentina Benedetto and Herrera, 1986 is redescribed and illustrated and Monorthis coloradoensis Benedetto, 1998b from northwestern Argentina is reassigned to the genus Ahtiella Öpik, 1932. Ahtiella famatiniana new species from volcaniclastic rocks of the Famatina range (western Argentina) and Ahtiella tunaensis new species from the Precordillera basin (Cuyania terrane) are proposed. Paleogeographic and stratigraphic evidence strongly suggests that Ahtiella originated in the Andean region of Gondwana to further migrate to Avalonia, Baltica, and Cuyania. Contrary to previous assumptions, the fossil record from the Famatina volcaniclastic succession suggests that the plectambonitoid Ahtiella famatiniana n. sp. evolved from the hesperonomiid orthoid Monorthis transversa Benedetto, 2003 that always occurs in the underlying strata. Phylogenetic analysis of Ahtiella species shows that A. famatiniana n. sp. and the Peruvian A. zarelae Villas in Gutiérrez-Marco and Villas, 2007 are not only the earliest species of the genus but also are morphologically intermediate between Monorthis Bates, 1968 and the later and more derived species of Ahtiella from Baltica and Cuyania. If, as empirical evidence presented here shows, Ahtiella originated from Monorthis through a series of minor transformations, then the impressive morphological gap between orthides and strophomenides was bridged through short-time cladogenesis events, suggesting that it might not have a definite discontinuity between the species level evolution and the origin of higher taxa (macroevolution).UUID: http://zoobank.org/4b8c5442-ea2c-41b2-97f7-4c0a8b0384a2


2015 ◽  
Vol 153 (4) ◽  
pp. 578-600 ◽  
Author(s):  
EUDALD MUJAL ◽  
JOSEP FORTUNY ◽  
ORIOL OMS ◽  
ARNAU BOLET ◽  
ÀNGEL GALOBART ◽  
...  

AbstractRecent finds of tetrapod ichnites in the red-bed and volcaniclastic succession of the Iberian Pyrenean Basin permits an assessment of the faunal diversity and palaeoenvironment of a late early Permian setting. The tetrapod ichnoassemblage is inferred with the aid of photogrammetry and constituted by Batrachichnus salamandroides, Limnopus isp., cf. Amphisauropus (these three ichnotaxa present associated swimming traces, assigned to Characichnos), cf. Ichniotherium, Dromopus isp., cf. Varanopus, Hyloidichnus isp. and Dimetropus leisnerianus. These ichnotaxa suggest the presence of temnospondyls, seymouriamorphs, diadectomorphs, araeoscelids, captorhinids and synapsid pelycosaurs as potential trackmakers. These faunas correlate to the late early Permian. Two ichnoassociations correspond to two different palaeoenvironments that were permanently or occasionally aquatic (meandering fluvial systems and unconfined runoff surfaces, respectively). Ichnotaxa in the fluvial system is more diverse and abundant than in the runoff surfaces system. The Iberian Pyrenean ichnoassemblage reveals the faunistic connection and similarities among nearing basins (Spain, southern France and Morocco) differing from the Central European basins (i.e. German Tambach Formation). Based on the palaeogeography and the climate models of the early Permian, we suggest the correlation of ichnofaunal composition with different palaeoclimate biomes. This results in a diffuse boundary of Gondwana–Laurasia land masses, indicating no geographic barriers but a possible climate control on the faunal distribution. Further studies, integrating data from distant tracksites, should refine these biome boundaries.


2014 ◽  
Author(s):  
T. M. Herriott ◽  
C. J. Nye ◽  
R. D. Reger ◽  
M. A. Wartes ◽  
D. L. LePain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document