fiber cell initiation
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 22 (21) ◽  
pp. 11438
Author(s):  
Qiaoling Wang ◽  
Qian Meng ◽  
Fan Xu ◽  
Qian Chen ◽  
Caixia Ma ◽  
...  

Cotton fiber is a seed trichome that protrudes from the outer epidermis of cotton ovule on the day of anthesis (0 day past anthesis, 0 DPA). The initial number and timing of fiber cells are closely related to fiber yield and quality. However, the mechanism underlying fiber initiation is still unclear. Here, we detected and compared the contents and compositions of sphingolipids and sterols in 0 DPA ovules of Xuzhou142 lintless-fuzzless mutants (Xufl) and Xinxiangxiaoji lintless-fuzzless mutants (Xinfl) and upland cotton wild-type Xuzhou142 (XuFL). Nine classes of sphingolipids and sixty-six sphingolipid molecular species were detected in wild-type and mutants. Compared with the wild type, the contents of Sphingosine-1-phosphate (S1P), Sphingosine (Sph), Glucosylceramide (GluCer), and Glycosyl-inositol-phospho-ceramides (GIPC) were decreased in the mutants, while the contents of Ceramide (Cer) were increased. Detail, the contents of two Cer molecular species, d18:1/22:0 and d18:1/24:0, and two Phyto-Cer molecular species, t18:0/22:0 and t18:0/h22:1 were significantly increased, while the contents of all GluCer and GIPC molecular species were decreased. Consistent with this result, the expression levels of seven genes involved in GluCer and GIPC synthesis were decreased in the mutants. Furthermore, exogenous application of a specific inhibitor of GluCer synthase, PDMP (1-phenyl-2-decanoylamino-3-morpholino-1-propanol), in ovule culture system, significantly inhibited the initiation of cotton fiber cells. In addition, five sterols and four sterol esters were detected in wild-type and mutant ovules. Compared with the wild type, the contents of total sterol were not significantly changed. While the contents of stigmasterol and campesterol were significantly increased, the contents of cholesterol were significantly decreased, and the contents of total sterol esters were significantly increased. In particular, the contents of campesterol esters and stigmasterol esters increased significantly in the two mutants. Consistently, the expression levels of some sterol synthase genes and sterol ester synthase genes were also changed in the two mutants. These results suggested that sphingolipids and sterols might have some roles in the initiation of fiber cells. Our results provided a novel insight into the regulatory mechanism of fiber cell initiation.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Atsumi Ando ◽  
Ryan C. Kirkbride ◽  
Don C. Jones ◽  
Jane Grimwood ◽  
Z. Jeffrey Chen

Abstract Background Cotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of separation between fiber and epidermal cells. Results Here we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest their respective roles in fiber cell initiation. Indeed, the amount of fibers in cultured ovules was increased by cell cycle progression inhibitor, Roscovitine, and decreased by ribosome biosynthesis inhibitor, Rbin-1. Moreover, subfunctionalization of homoeologs was pervasive in fiber and epidermal cells, with expression bias towards 10% more D than A homoeologs of cell cycle related genes and 40–50% more D than A homoeologs of ribosomal protein subunit genes. Key cell cycle regulators were predicted to be epialleles in allotetraploid cotton. MYB-transcription factor genes displayed expression divergence between fibers and ovules. Notably, many phytohormone-related genes were upregulated in ovules and down-regulated in fibers, suggesting spatial-temporal effects on fiber cell development. Conclusions Fiber cell initiation is accompanied by cell cycle arrest coupled with active ribosome biosynthesis, spatial-temporal regulation of phytohormones and MYB transcription factors, and homoeolog expression bias of cell cycle and ribosome biosynthesis genes. These valuable genomic resources and molecular insights will help develop breeding and biotechnological tools to improve cotton fiber production.


2020 ◽  
Author(s):  
Atsumi Ando ◽  
Ryan C. Kirkbride ◽  
Don Jones ◽  
Jane Grimwood ◽  
Z. Jeffrey Chen

Abstract BackgroundCotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of isolating fiber cells from epidermal cells.ResultsHere we employed laser-capture microdissection (LCM) to separate these cell types. RNA-seq analysis revealed transitional differences between the fiber and epidermal-layer cells at 0 or 2 days post anthesis. Specifically, down-regulation of putative cell cycle genes was coupled with upregulation of ribosome biosynthesis and translation-related genes, which may suggest their respective roles in fiber cell initiation and elongation. Indeed, the amount of fibers in cultured ovules was increased by cell cycle progression inhibitor, Roscovitine, and decreased by ribosome biosynthesis inhibitor, Rbin-1. Moreover, many phytohormone-related genes were upregulated in the ovules and down-regulated in the fibers, suggesting their spatial-temporal effects on fiber cell development. Key cell cycle regulators were predicted to be epialleles, and MYB-transcription factor related genes displayed expression divergence between fibers and ovules, implying their effects on fiber traits.ConclusionsWe revealed that fiber cell initiation is accompanied by cell cycle arrest coupled with active ribosome biosynthesis, spatial-temporal regulation of phytohormones and expression divergence between MYB transcription factor genes. These valuable genomic resources and molecular insights will help develop breeding and biotechnological tools to improve cotton fiber production.


2019 ◽  
Vol 70 (12) ◽  
pp. 3139-3151 ◽  
Author(s):  
Jianyan Zeng ◽  
Mi Zhang ◽  
Lei Hou ◽  
Wenqin Bai ◽  
Xingying Yan ◽  
...  

AbstractAuxin-dependent cell expansion is crucial for initiation of fiber cells in cotton (Gossypium hirsutum), which ultimately determines fiber yield and quality. However, the regulation of this process is far from being well understood. In this study, we demonstrate an antagonistic effect between cytokinin (CK) and auxin on cotton fiber initiation. In vitro and in planta experiments indicate that enhanced CK levels can reduce auxin accumulation in the ovule integument, which may account for the defects in the fiberless mutant xu142fl. In turn, supplementation with auxin can recover fiber growth of CK-treated ovules and mutant ovules. We further found that GhPIN3a is a key auxin transporter for fiber-cell initiation and is polarly localized to the plasma membranes of non-fiber cells, but not to those of fiber cells. This polar localization allows auxin to be transported within the ovule integument while specifically accumulating in fiber cells. We show that CKs antagonize the promotive effect of auxin on fiber cell initiation by undermining asymmetric accumulation of auxin in the ovule epidermis through down-regulation of GhPIN3a and disturbance of the polar localization of the protein.


2007 ◽  
Vol 51 (3) ◽  
pp. 419-430 ◽  
Author(s):  
Ming Luo ◽  
Yuehua Xiao ◽  
Xianbi Li ◽  
Xiaofeng Lu ◽  
Wei Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document