total sterol
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Leigh Goedeke ◽  
Alberto Canfrán-Duque ◽  
Noemi Rotllan ◽  
Balkrishna Chaube ◽  
Bonne M. Thompson ◽  
...  

AbstractIntricate regulatory networks govern the net balance of cholesterol biosynthesis, uptake and efflux; however, the mechanisms surrounding cholesterol homeostasis remain incompletely understood. Here, we develop an integrative genomic strategy to detect regulators of LDLR activity and identify 250 genes whose knockdown affects LDL-cholesterol uptake and whose expression is modulated by intracellular cholesterol levels in human hepatic cells. From these hits, we focus on MMAB, an enzyme which catalyzes the conversion of vitamin B12 to adenosylcobalamin, and whose expression has previously been linked with altered levels of circulating cholesterol in humans. We demonstrate that hepatic levels of MMAB are modulated by dietary and cellular cholesterol levels through SREBP2, the master transcriptional regulator of cholesterol homeostasis. Knockdown of MMAB decreases intracellular cholesterol levels and augments SREBP2-mediated gene expression and LDL-cholesterol uptake in human and mouse hepatic cell lines. Reductions in total sterol content were attributed to increased intracellular levels of propionic and methylmalonic acid and subsequent inhibition of HMGCR activity and cholesterol biosynthesis. Moreover, mice treated with antisense inhibitors of MMAB display a significant reduction in hepatic HMGCR activity, hepatic sterol content and increased expression of SREBP2-mediated genes. Collectively, these findings reveal an unexpected role for the adenosylcobalamin pathway in regulating LDLR expression and identify MMAB as an additional control point by which cholesterol biosynthesis is regulated by its end product.


2021 ◽  
Vol 22 (21) ◽  
pp. 11438
Author(s):  
Qiaoling Wang ◽  
Qian Meng ◽  
Fan Xu ◽  
Qian Chen ◽  
Caixia Ma ◽  
...  

Cotton fiber is a seed trichome that protrudes from the outer epidermis of cotton ovule on the day of anthesis (0 day past anthesis, 0 DPA). The initial number and timing of fiber cells are closely related to fiber yield and quality. However, the mechanism underlying fiber initiation is still unclear. Here, we detected and compared the contents and compositions of sphingolipids and sterols in 0 DPA ovules of Xuzhou142 lintless-fuzzless mutants (Xufl) and Xinxiangxiaoji lintless-fuzzless mutants (Xinfl) and upland cotton wild-type Xuzhou142 (XuFL). Nine classes of sphingolipids and sixty-six sphingolipid molecular species were detected in wild-type and mutants. Compared with the wild type, the contents of Sphingosine-1-phosphate (S1P), Sphingosine (Sph), Glucosylceramide (GluCer), and Glycosyl-inositol-phospho-ceramides (GIPC) were decreased in the mutants, while the contents of Ceramide (Cer) were increased. Detail, the contents of two Cer molecular species, d18:1/22:0 and d18:1/24:0, and two Phyto-Cer molecular species, t18:0/22:0 and t18:0/h22:1 were significantly increased, while the contents of all GluCer and GIPC molecular species were decreased. Consistent with this result, the expression levels of seven genes involved in GluCer and GIPC synthesis were decreased in the mutants. Furthermore, exogenous application of a specific inhibitor of GluCer synthase, PDMP (1-phenyl-2-decanoylamino-3-morpholino-1-propanol), in ovule culture system, significantly inhibited the initiation of cotton fiber cells. In addition, five sterols and four sterol esters were detected in wild-type and mutant ovules. Compared with the wild type, the contents of total sterol were not significantly changed. While the contents of stigmasterol and campesterol were significantly increased, the contents of cholesterol were significantly decreased, and the contents of total sterol esters were significantly increased. In particular, the contents of campesterol esters and stigmasterol esters increased significantly in the two mutants. Consistently, the expression levels of some sterol synthase genes and sterol ester synthase genes were also changed in the two mutants. These results suggested that sphingolipids and sterols might have some roles in the initiation of fiber cells. Our results provided a novel insight into the regulatory mechanism of fiber cell initiation.


2020 ◽  
Vol 71 (4) ◽  
pp. 376
Author(s):  
A. Arbonés ◽  
B. Sastre ◽  
M. A. Pérez ◽  
C. De Lorenzo ◽  
M. Pascual ◽  
...  

The objective of this work was to evaluate the influence of irrigation and fertilization with nitrogen and potassium on the sterol and triterpene dialcohol contents in two trials of cv. Arbequina in super-intensive orchards in Madrid and Lleida (Spain), using a completely randomized block design. No significant differences in total sterols between deficit and full irrigation treatments were observed. Under very dry conditions, the sterol levels from fully irrigated trees were higher than from rain-fed treatments and the triterpene dialcohol erythrodiol+ uvaol content was lower in the irrigated treatments in Lleida. In the fertilizer trial with full irrigation, total sterols were higher in the two N treatments compared to the unfertilized one; while erythrodiol + uvaol decreased. The application of K fertilizer had no effect on total sterol or triterpene dialcohol contents. A proper fertilization and irrigation are vital to obtain high quality EVOOs that meet the regulatory range in sterol and erythrodiol + uvaol contents.


2020 ◽  
Vol 13 (12) ◽  
pp. 481
Author(s):  
Ana Cristina Jaramillo-Madrid ◽  
Raffaela Abbriano ◽  
Justin Ashworth ◽  
Michele Fabris ◽  
Mathieu Pernice ◽  
...  

Sterols are a class of triterpenoid molecules with diverse functional roles in eukaryotic cells, including intracellular signaling and regulation of cell membrane fluidity. Diatoms are a dominant eukaryotic phytoplankton group that produce a wide diversity of sterol compounds. The enzymes 3-hydroxy-3-methyl glutaryl CoA reductase (HMGR) and squalene epoxidase (SQE) have been reported to be rate-limiting steps in sterol biosynthesis in other model eukaryotes; however, the extent to which these enzymes regulate triterpenoid production in diatoms is not known. To probe the role of these two metabolic nodes in the regulation of sterol metabolic flux in diatoms, we independently over-expressed two versions of the native HMGR and a conventional, heterologous SQE gene in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Overexpression of these key enzymes resulted in significant differential accumulation of downstream sterol pathway intermediates in P. tricornutum. HMGR-mVenus overexpression resulted in the accumulation of squalene, cycloartenol, and obtusifoliol, while cycloartenol and obtusifoliol accumulated in response to heterologous NoSQE-mVenus overexpression. In addition, accumulation of the end-point sterol 24-methylenecholesta-5,24(24’)-dien-3β-ol was observed in all P. tricornutum overexpression lines, and campesterol increased three-fold in P. tricornutum lines expressing NoSQE-mVenus. Minor differences in end-point sterol composition were also found in T. pseudonana, but no accumulation of sterol pathway intermediates was observed. Despite the successful manipulation of pathway intermediates and individual sterols in P. tricornutum, total sterol levels did not change significantly in transformed lines, suggesting the existence of tight pathway regulation to maintain total sterol content.


2020 ◽  
Author(s):  
Pengjuan Zu ◽  
Hauke Koch ◽  
Orlando Schwery ◽  
Samuel Pironon ◽  
Charlotte Phillips ◽  
...  

SummaryPhytosterols are primary plant metabolites that have fundamental structural and regulatory functions. They are also essential nutrients for phytophagous insects, including pollinators, that cannot synthesize sterols. Despite the well-described composition and diversity in vegetative plant tissues, few studies have examined phytosterol diversity in pollen.We quantified 25 pollen phytosterols in 122 plant species (105 genera, 51 families) to determine their composition and diversity across plant taxa. We searched literature and databases for plant phylogeny, environmental conditions, and pollinator guilds of the species to examine the relationships with pollen sterols.24-methylenecholesterol, sitosterol and isofucosterol were the most common and abundant pollen sterols. We found phylogenetic clustering of twelve individual sterols, total sterol content and sterol diversity, and of sterol groupings that reflect their underlying biosynthesis pathway (24 carbon alkylation, ring B desaturation). Plants originating in tropical-like climates (higher mean annual temperature, lower temperature seasonality, higher precipitation in wettest quarter) were more likely to record higher pollen sterol content. However, pollen sterol composition and content showed no clear relationship with pollinator guilds.Our study is the first to show that pollen sterol diversity is phylogenetically clustered and that pollen sterol content may adapt to environmental conditions.


2020 ◽  
Vol 10 (19) ◽  
pp. 6733
Author(s):  
Vasiliki Skiada ◽  
Sofia Agriopoulou ◽  
Panagiotis Tsarouhas ◽  
Panagiotis Katsaris ◽  
Eygenia Stamatelopoulou ◽  
...  

Extra virgin olive oil (EVOO) quality and authenticity are important and challenging factors nowadays for the assurance of consumers’ protection, prevention of unfair competition, and disruption of the national economy by a false declaration of origin. Hence, the recognition of EVOO authenticity is of great interest in terms of commercial and quality aspects. The objective of this study was to evaluate and discriminate monovarietal extra virgin olive oils of the two dominant olive cultivars, Lianolia Kerkyras and Koroneiki, produced in the coastline part of Western Greece, based on their chemical characteristics, followed by statistical and chemometric analysis in order to profile for the first time the typical characteristics of Lianolia Kerkyras as well as to identify possible markers for authenticity purpose. A total of 104 olive oil samples were collected. Both cultivars had an overall high quality profile as far as their basic qualitative parameters (free fatty acid, peroxide value, and UV spectrometric indices) are concerned. A higher concentration in the mono-unsaturated oleic acid characterize olive oils of cv. Koroneiki compared to cv. Lianolia Kerkyras, while a clearly higher concentration in the poly-unsaturated linoleic acid was observed in olive oils of cv. Lianolia Kerkyras. In addition, olive oil samples of cv. Koroneiki showed a clear lower total sterols concentration with a percentage of 40.9% not surpassing the required EU Regulatory limit of 1000 mg/kg, an observation which strengthens previous published results of our research group and depicts an overall “intrinsic characteristic” of cv. Koroneiki. As far as the profile of the individual sterols is concerned, Lianolia Kerkyras samples exhibited higher mean value for the total sterol content as well as for β-sitosterol, the major phytosterol in olive oils, compared to the relative values of Koroneiki. Significant differences in the sterolic and fatty acid composition of the examined olive oil samples were shown by means of statistical analysis demonstrating a strong botanical effect and depicting that those compositional markers can be suggested as possible authenticity tools.


2020 ◽  
Author(s):  
Ana Cristina Jaramillo-Madrid ◽  
Raffaela Abbriano ◽  
Justin Ashworth ◽  
Michele Fabris ◽  
Peter J. Ralph

AbstractSterols are a class of triterpenoid molecules with diverse functional roles in eukaryotic cells, including intracellular signaling and regulation of cell membrane fluidity. Diatoms are a dominant eukaryotic phytoplankton group that produce a wide diversity of sterol compounds. The enzymes 3-hydroxy-3-methyl glutaryl CoA reductase (HMGR) and squalene epoxidase (SQE) have been reported to be rate-limiting steps in sterol biosynthesis in other model eukaryotes; however, the extent to which these enzymes regulate triterpenoid production in diatoms is not known. To probe the role of these two metabolic nodes in the regulation of sterol metabolic flux in diatoms, we independently over-expressed two versions of the native HMGR and a conventional, heterologous SQE gene in the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum. Overexpression of these key enzymes resulted in significant differential accumulation of downstream sterol pathway intermediates in P. tricornutum. HMGR-mVenus overexpression resulted in the accumulation of squalene, cycloartenol, and obtusifoliol, while cycloartenol and obtusifoliol accumulated in response to heterologous NoSQE-mVenus overexpression. In addition, accumulation of the end-point sterol 24-methylenecholesta-5,24(24’)-dien-3β-ol was observed in all P. tricornutum overexpression lines, and campesterol increased 3-fold in P. tricornutum lines expressing NoSQE-mVenus. Minor differences in end-point sterol composition were also found in T. pseudonana, but no accumulation of sterol pathway intermediates was observed. Despite the successful manipulation of pathway intermediates and individual sterols in P. tricornutum, total sterol levels did not change significantly in transformed lines, suggesting the existence of tight pathway regulation to maintain total sterol content.


2020 ◽  
Vol 17 (3) ◽  
pp. 649-666
Author(s):  
Yan Shen ◽  
Volker Thiel ◽  
Pablo Suarez-Gonzalez ◽  
Sebastiaan W. Rampen ◽  
Joachim Reitner

Abstract. Microbial mats are self-sustaining benthic ecosystems composed of highly diverse microbial communities. It has been proposed that microbial mats were widespread in Proterozoic marine environments, prior to the emergence of bioturbating organisms at the Precambrian–Cambrian transition. One characteristic feature of Precambrian biomarker records is that steranes are typically absent or occur in very low concentrations. This has been explained by low eukaryotic source inputs, or degradation of primary produced sterols in benthic microbial mats (“mat-seal effect”). To better understand the preservational pathways of sterols in microbial mats, we analyzed freely extractable and carbonate-bound lipid fractions as well as decalcified extraction residues in different layers of a recent calcifying mat (∼1500 years) from the hypersaline Lake 2 on the island of Kiritimati, central Pacific. A variety of C27–C29 sterols and distinctive C31 4α-methylsterols (4α-methylgorgosterol and 4α-methylgorgostanol, biomarkers for dinoflagellates) were detected in freely extractable and carbonate-bound lipid pools. These sterols most likely originated from organisms living in the water column and the upper mat layers. This autochthonous biomass experienced progressive microbial transformation and degradation in the microbial mat, as reflected by a significant drop in total sterol concentrations, up to 98 %, in the deeper layers, and a concomitant decrease in total organic carbon. Carbonate-bound sterols were generally low in abundance compared to the freely extractable portion, suggesting that incorporation into the mineral matrix does not play a major role in the preservation of eukaryotic sterols in this mat. Likewise, pyrolysis of extraction residues suggested that sequestration of steroid carbon skeletons into insoluble organic matter was low compared to hopanoids. Taken together, our findings argue for a major mat-seal effect affecting the distribution and preservation of steroids in the mat studied. This result markedly differs from recent findings made for another microbial mat growing in the nearby hypersaline Lake 22 on the same island, where sterols showed no systematic decrease with depth. The observed discrepancies in the taphonomic pathways of sterols in microbial mats from Kiritimati may be linked to multiple biotic and abiotic factors including salinity and periods of subaerial exposure, implying that caution has to be exercised in the interpretation of sterol distributions in modern and ancient microbial mat settings.


2019 ◽  
Vol 11 (2) ◽  
pp. 259-265
Author(s):  
Asli Yorulmaz ◽  
Aydin Ünay

The aim of the current study was to classify Turkish safflower oils based on sterol and fatty acid composition. For this purpose, 37 samples from five different safflower varieties (Dinçer, Linas, Remzibey-05, Balcı and Olas) grown in the same agricultural and environmental conditions were obtained. Seeds were evaluated for their oil, water and ash content. Oils of seeds were extracted by solvent extraction and oils were analyzed for their sterols and fatty acids. Results have shown that Linas and Olas varieties’ oil contents were significantly higher than others’. There were clear differences in fatty acid compositions of various cultivars. Remzibey-05 and Olas varieties were different from others by their higher oleic and relatively lower linoleic acid ratios. Total sterol contents of oils ranged among 2700-3626 mg/kg and the main phytosterol was β-sitosterol covering 43.27-48.16 % of the total sterols


2019 ◽  
Vol 34 (3) ◽  
pp. 146-152
Author(s):  
Yahya Saber E. Mansour ◽  
Nusieba A. Mohammed Ibrahim

The risks of dyslipidemia and cardiovascular diseases are well known to be increased in diabetic patients. Moreover, the therapeutic response of fenofibrate drug on blood serum lipid is also known. However, previous studies did not compare the outcomes of fenofibrate on blood serum levels in patients with type II diabetes mellitus with non-diabetic patients. The purpose of this study was to analyze the outcomes of fenofibrate on blood serum lipid profiles in hyperlipidemic patients with type II diabetes mellitus compared to hyperlipidemic patients without diabetes mellitus. This study was conducted on 40 type II diabetic patients and 30 non-diabetic patients. Their ages varied 30-55 years and all of them were hyperlipidemic. Blood serum lipid levels were measured before and once treatment at 1, 2, and 4 months. It was found that the levels of S. Total sterol and S. LDL-C were less in diabetic patients than in non-diabetic patients once they were exploited the different doses of fenofibrate, whereas the changes in S. HDL-C and S. triglyceride were nearly similar in each. Furthermore, it was noticed that just about the same responses of S. Total sterol and S. LDL-C reduction were achieved in diabetic patients once they were using a higher dose than that used for non-diabetic patients. Thus, higher doses of fenofibrate are required to reduce blood serum lipid levels in diabetic patients as compared to non-diabetic patients.


Sign in / Sign up

Export Citation Format

Share Document