somatosensory gating
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 11 (2) ◽  
pp. 166
Author(s):  
Fu-Jung Hsiao ◽  
Wei-Ta Chen ◽  
Yen-Feng Wang ◽  
Shih-Pin Chen ◽  
Kuan-Lin Lai ◽  
...  

Sensory gating, a habituation-related but more basic protective mechanism against brain sensory overload, is altered in patients with migraine and linked to headache severity. This study investigated whether somatosensory (SI) gating responses determined 3-months treatment outcomes in patients with episodic migraine (EM) and chronic migraine (CM). A 306-channel magnetoencephalography (MEG) with paired-pulse stimulation paradigm was used to record their neuromagnetic responses. To calculate the peak amplitude and latency and compute the gating ratios (second vs. first amplitude), the first and second responses to the paired stimuli from the primary somatosensory cortex were obtained. All patients were assigned to subgroups labeled good or poor according to their headache frequency at baseline compared with at the third month of treatment. The gating ratio in the CM group (n = 37) was significantly different between those identified as good and poor (p = 0.009). In the EM group (n = 30), the latency in the second response differed by treatment outcomes (p = 0.007). In the receiver operating characteristic analysis, the areas under the curve for the CM and EM groups were 0.737 and 0.761, respectively. Somatosensory gating responses were associated with treatment outcomes in patients with migraine; future studies with large patient samples are warranted.


2021 ◽  
Vol 307 ◽  
pp. 111227
Author(s):  
Chia-Hsiung Cheng ◽  
Chia-Yih Liu ◽  
Shih-Chieh Hsu ◽  
Yi-Jhan Tseng

2017 ◽  
Vol 118 (4) ◽  
pp. 2052-2058 ◽  
Author(s):  
David J. Arpin ◽  
James E. Gehringer ◽  
Tony W. Wilson ◽  
Max J. Kurz

When identical stimuli are presented in rapid temporal succession, neural responses to the second stimulation are often weaker than those observed for the first. This phenomenon is termed sensory gating and is believed to be an adaptive feature that helps prevent higher-order cortical centers from being flooded with unnecessary information. Recently, sensory gating in the somatosensory system has been linked to deficits in tactile discrimination. Additionally, studies have linked poor tactile discrimination with impaired walking and balance in individuals with multiple sclerosis (MS). In this study, we examine the neural basis of somatosensory gating in patients with MS and healthy controls and assess the relationship between somatosensory gating and walking performance. We used magnetoencephalography to record neural responses to paired-pulse electrical stimulation applied to the right posterior tibial nerve. All participants also walked across a digital mat, which recorded their spatiotemporal gait kinematics. Our results showed the amplitude of the response to the second stimulation was sharply reduced only in controls, resulting in a significantly reduced somatosensory gating in the patients with MS. No group differences were observed in the amplitude of the response to the first stimulation nor the latency of the neural response to either the first or second stimulation. Interestingly, the altered somatosensory gating responses were correlated with aberrant spatiotemporal gait kinematics in the patients with MS. These results suggest that inhibitory GABA circuits may be altered in patients with MS, which impacts somatosensory gating and contributes to the motor performance deficits seen in these patients. NEW & NOTEWORTHY We aimed to determine whether somatosensory gating in patients with multiple sclerosis (MS) differed compared with healthy controls and whether a relationship exists between somatosensory gating and walking performance. We found reduced somatosensory gating responses in patients with MS, and these altered somatosensory gating responses were correlated with the mobility impairments. These novel findings show that somatosensory gating is impaired in patients with MS and is related to the mobility impairments seen in these patients.


Cephalalgia ◽  
2017 ◽  
Vol 38 (4) ◽  
pp. 744-753 ◽  
Author(s):  
Fu-Jung Hsiao ◽  
Shuu-Jiun Wang ◽  
Yung-Yang Lin ◽  
Jong-Ling Fuh ◽  
Yu-Chieh Ko ◽  
...  

Background Brain excitability is changed in migraine but not fully characterized yet. This study explored if somatosensory gating is altered in migraine and linked to migraine chronification. Methods Paired electrical stimuli were delivered to the left index fingers of 21 patients with migraine without aura (MO), 22 patients with chronic migraine (CM), and 36 controls. The first and second responses to the paired stimuli were obtained from the contralateral primary (cSI), contralateral secondary (cSII) and ipsilateral secondary (iSII) somatosensory cortices to compute the gating ratios (second vs. first response strengths). Results The first and second cSI responses and gating ratios differed in all groups ( p < 0.05); the responses were typically smaller in the MO and CM groups. The cSI gating ratio increased as a continuum across controls (0.73 ± 0.04, p < 0.001), MO (0.83 ± 0.04) to CM (0.97 ± 0.06) and was higher in CM vs. controls ( p < 0.001). When MO and CM were combined, cSI gating ratio was associated with headache frequency (r = 0.418, p = 0.005). Paired responses and gating ratios of cSII and iSII did not differ among the groups. Conclusions Somatosensory gating is altered in migraine and associated with headache chronification. Further studies must clarify if this abnormal sensory modulation is a true gating deficit independent of low preexcitation level.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chia-Hsiung Cheng ◽  
Pei-Ying S. Chan ◽  
Sylvain Baillet ◽  
Yung-Yang Lin

Sensory gating (SG), referring to an attenuated neural response to the second identical stimulus, is considered as preattentive processing in the central nervous system to filter redundant sensory inputs. Insufficient somatosensory SG has been found in the aged adults, particularly in the secondary somatosensory cortex (SII). However, it remains unclear which variables leading to the age-related somatosensory SG decline. There has been evidence showing a relationship between brain oscillations and cortical evoked excitability. Thus, this study used whole-head magnetoencephalography to record responses to paired-pulse electrical stimulation to the left median nerve in healthy young and elderly participants to test whether insufficient stimulus 1- (S1-) induced event-related desynchronization (ERD) contributes to a less-suppressed stimulus 2- (S2-) evoked response. Our analysis revealed that the minimum norm estimates showed age-related reduction of SG in the bilateral SII regions. Spectral power analysis showed that the elderly demonstrated significantly reduced alpha ERD in the contralateral SII (SIIc). Moreover, it was striking to note that lower S1-induced alpha ERD was associated with higher S2-evoked amplitudes in the SIIc among the aged adults. Conclusively, our findings suggest that age-related decline of somatosensory SG is partially attributed to the altered S1-induced oscillatory activity.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Pei-Ying S. Chan ◽  
Chia-Hsiung Cheng ◽  
Andreas von Leupoldt

The perception of respiratory sensations can be of significant importance to individuals for survival and greatly impact quality of life. Respiratory sensory gating, similar to somatosensory gating with exteroceptive stimuli, is indicative of brain cortices filtering out repetitive respiratory stimuli and has been investigated in adults with and without diseases. Respiratory gating can be tested with the respiratory-related evoked potential (RREP) method in the electroencephalogram with a paired inspiratory occlusion paradigm. Here, the RREP N1 component elicited by the second stimulus (S2) shows reduced amplitudes compared to the RREP N1 component elicited by the first stimulus (S1). However, little is known regarding the effect of development on respiratory sensory gating. The present study examined respiratory sensory gating in 22 typically developed school-aged children and 22 healthy adults. Paired inspiratory occlusions of 150-ms each with an inter-stimulus-interval of 500-ms were delivered randomly every 2–4 breaths during recording. The main results showed a significantly larger RREP N1 S2/S1 ratio in the children group than in the adult group. In addition, children compared to adults demonstrated significantly smaller N1 peak amplitudes in response to S1. Our results suggest that school-aged children, compared to adults, display reduced respiratory sensory gating.


Sign in / Sign up

Export Citation Format

Share Document