hydrothermal quartz
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 629
Author(s):  
Štefan Ferenc ◽  
Martin Števko ◽  
Tomáš Mikuš ◽  
Stanislava Milovská ◽  
Richard Kopáčik ◽  
...  

An occurrence of vein U-Mo mineralization is located in the Majerská valley near Čučma, about 7 km to the NNE of the district town of Rožňava (Eastern Slovakia). Mineralization is hosted in the acidic metapyroclastics of the Silurian Bystrý Potok Fm. (Gemeric Unit), and originated in the following stages: (I.) quartz I, fluorapatite I; (II.) quartz II, fluorapatite II, zircon, rutile chlorite, tourmaline; (III.) uraninite, molybdenite, U-Ti oxides; (IV.) pyrite I, ullmannite, gersdorffite, cobaltite; (Va.) galena, bismuth, tetradymite, joséite A and B, Bi3(TeS)2 mineral phase, (BiPb)(TeS) mineral phase, ikunolite; (Vb.) minerals of the kobellite–tintinaite series, cosalite; (VI.) pyrite II; (VII.) titanite, chlorite; and (VIII.) supergene mineral phases. The chemical in-situ electron-microprobe U-Pb dating of uraninite from a studied vein yielded an average age of around 265 Ma, corresponding to the Guadalupian Epoch of Permian; the obtained data corresponds with the age of Gemeric S-type granites. The age correlation of uraninite with the Gemeric S-type granites and the spatial connection of the studied mineralization with the Čučma granite allows us to assume that it is a Hercynian, granite-related (perigranitic) mineralization.


2021 ◽  
Vol 131 ◽  
pp. 104002
Author(s):  
Zhiyuan Sun ◽  
Jingbin Wang ◽  
Yang Wang ◽  
Yan Zhang ◽  
Lutong Zhao

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Lawrence C. Carter ◽  
Ben J. Williamson ◽  
Simon R. Tapster ◽  
Catia Costa ◽  
Geoffrey W. Grime ◽  
...  

AbstractPorphyry-type deposits are the world’s main source of copper and molybdenum and provide a large proportion of gold and other metals. However, the mechanism by which mineralising fluids are extracted from source magmas and transported upwards into the ore-forming environment is not clearly understood. Here we use field, micro-textural and geochemical techniques to investigate field relationships and samples from a circa 8 km deep cross-section through the archetypal Yerington porphyry district, Nevada. We identify an interconnected network of relatively low-temperature hydrothermal quartz that is connected to mineralised miarolitic cavities within aplite dykes. We propose that porphyry-deposit-forming fluids migrated from evolved, more water-rich internal regions of the underlying Luhr Hill granite via these aplite dykes which contained a permeable magmatic crystal mush of feldspar and quartz. The textures we describe provide petrographic evidence for the transport of fluids through crystal mush dykes. We suggest that this process should be considered in future models for the formation of porphyry- and similar-type deposits.


2021 ◽  
Vol 192 ◽  
pp. 2
Author(s):  
Gaëtan Launay ◽  
Stanislas Sizaret ◽  
Philippe Lach ◽  
Jérémie Melleton ◽  
Éric Gloaguen ◽  
...  

The W-Sn Panasqueira ore deposit is a magmatic-hydrothermal system, which includes a high grade quartz-vein type mineralization and underneath disseminated greisen-type mineralization located in the upper part of a two-mica granite. We investigate genetic and chronological relationships between greisenization of the Panasqueira granite and the formation of ore-bearing quartz veins by monitoring major and trace elements variations in quartz-muscovite assemblages composing the two-mica granite, greisen and ore-bearing quartz veins. Greisen is marked by an overall depletion in Mg, Ti, Ca, Na, Ba, Sr, REE and enrichment in Fe, Li, Rb, Cs, Sn, W that reflect the breakdown of feldspars and biotite and implication of W-Sn-bearing fluids during greisenization. Muscovite from greisen and mineralized quartz veins are enriched in granophile elements (F, Rb, Cs, Li, Sn, W and Zn) compared to magmatic muscovite from the two-mica granite. Trace elements contents in quartz depict evolutionary trends with progressive enrichment in Ge and B and depletion in Al, Ti and Li between magmatic and hydrothermal quartz that emphasize the progressive evolution and cooling of the magmatic-hydrothermal system of Panasqueira. Multivariate statistical approach applied on quartz and muscovite data demonstrates similarities in composition between quartz and muscovite from greisen with those composing ore-bearing quartz veins. These similarities suggest that greisenization and the formation of mineralized veins result from the same hydrothermal event and derived from the same source of hydrothermal fluids. Apatite from greisen and quartz vein yielded respectively U-Pb ages of 292 ± 10 Ma and 295 ± 5 Ma confirming that greisenization and the formation of mineralized veins occurred roughly at the same time. These ages also overlap with the cooling age of the Panasqueira granite (296 ± 4 Ma), indicating a temporal and genetic link between greisenization, W-Sn mineralization and the granite crystallization. Temperatures of the magmatic-hydrothermal system constrained by Ti-in quartz thermometry depicts a cooling trend from magmatic quartz of granite (700–600 °C) to hydrothermal quartz of greisen (500–400 °C) and veins (450–350 °C). These results provide evidences that greisenization and the formation of W-Sn bearing quartz veins occurred at the magmatic-hydrothermal transition, during which orthomagmatic fluids rich in volatils, incompatible elements and metals (W and Sn) were exsolved at the final stage of solidification of the Panasqueira two-mica granite.


Sign in / Sign up

Export Citation Format

Share Document