mohr’s circle
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 13)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 11 (22) ◽  
pp. 10585
Author(s):  
Sang-Woo Kim

This study proposes an analytical model applicable to the shear analysis of reinforced high-strength concrete beams. The proposed model satisfies the equilibrium and compatibility conditions and constitutive laws of the materials. The proposed model is based on the fixed angle theory and allows the principal stress to rotate as the load increases, so that the RC beams can be analyzed more realistically. High-strength material models were used in the proposed model to consider the characteristics of high-strength concrete. The concrete shear contribution at crack surfaces was calculated from Mohr’s circle. The proposed model considers the effect of bending moment on shear by reducing the amount of longitudinal reinforcement resisting shear. To verify the accuracy of the proposed model, a total of 64 experimental results were collected from the literature. A comparison with previous experimental results confirmed that the proposed model can be predicted relatively accurately with an average of 0.98 and a coefficient of variation of 12.1%.


2021 ◽  
Author(s):  
A. Mendoza-Palomino ◽  
C. A. Ceron-Alvarez ◽  
R. Juarez-Aguirre ◽  
R. Salgado-Estrada ◽  
F. Lopez-Huerta ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Budi Arifvianto ◽  
Yuris Bahadur Wirawan ◽  
Urip Agus Salim ◽  
Suyitno Suyitno ◽  
Muslim Mahardika

Purpose The purpose of this study is to investigate the influences of extruder temperatures and raster orientations on the mechanical properties of polylactic-acid (PLA) material processed by using fused filament fabrication (FFF). Design/methodology/approach In this research, the PLA specimens were first printed with nozzle or extruder temperatures of 205°C, 215°C and 225°C and then evaluated in terms of their physical, chemical and mechanical properties. An appropriate extruder temperature was then selected based on this experiment and used for the printing of the other PLA specimens having various raster orientations. A series of tensile tests were carried out again to investigate the influence of raster orientations on the tensile strength, tensile strain and elastic modulus of those FFF-processed PLA materials. In the end, the one-way ANOVA was applied for the statistical analysis and the Mohr’s circle was established to aid in the analysis of the data obtained in this experiment. Findings The result of this study shows that the chemistry, porosity, degree of crystallinity and mechanical properties (tensile strength, strain and elastic modulus) of the PLA material printed with a raster angle of 0° were all insensitive to the increasing extruder temperature from 205°C to 225°C. Meanwhile, the mechanical properties of such printed PLA material were obviously influenced by its raster orientation. In this case, a PLA material with a raster orientation parallel to its loading axis, i.e. those with a raster angle of θ = 0°, was found as the strongest material. Meanwhile, the raster configuration-oriented perpendicular to its loading axis or θ = 90° yielded the weakest PLA material. The results of the tensile tests for the PLA material printed with bidirectional raster orientations, i.e. θ = 0°/90° and 45°/−45° demonstrated their strengths with values falling between those of the materials having unidirectional raster θ = 0° and 90°. Furthermore, the result of the analysis by using a well-known Mohr’s circle confirmed the experimental tensile strengths and the failure mechanisms of the PLA material that had been printed with various raster orientations. Originality/value This study presented consistent results on the chemistry, physical, degree of crystallinity and mechanical properties of the FFF-processed PLA in responding to the increasing extruder temperature from 205°C to 225°C applied during the printing process. Unlike the results of the previous studies, all these properties were also found to be insensitive to the increase of extruder temperature. Also, the result of this research demonstrates the usability of Mohr’s circle in the analysis of stresses working on an FFF-processed PLA material in responding to the changes in raster orientation printed in this material.


2021 ◽  
Vol 7 (8) ◽  
pp. 76446-76454
Author(s):  
Washington Luiz Rodrigues de Queiroz ◽  
Arthur Aires Lima
Keyword(s):  

Author(s):  
Hongjia Lu ◽  
Andrew Tyas ◽  
Matthew Gilbert ◽  
Aleksey V. Pichugin

AbstractTransmissible loads are external loads defined by their line of action, with actual points of load application chosen as part of the topology optimization process. Although for problems where the optimal structure is a funicular, transmissible loads can be viewed as surface loads, in other cases such loads are free to be applied to internal parts of the structure. There are two main transmissible load formulations described in the literature: a rigid bar (constrained displacement) formulation or, less commonly, a migrating load (equilibrium) formulation. Here, we employ a simple Mohr’s circle analysis to show that the rigid bar formulation will only produce correct structural forms in certain specific circumstances. Numerical examples are used to demonstrate (and explain) the incorrect topologies produced when the rigid bar formulation is applied in other situations. A new analytical solution is also presented for a uniformly loaded cantilever structure. Finally, we invoke duality principles to elucidate the source of the discrepancy between the two formulations, considering both discrete truss and continuum topology optimization formulations.


Sign in / Sign up

Export Citation Format

Share Document