dynamic energy release rate
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2004 ◽  
Vol 261-263 ◽  
pp. 477-482 ◽  
Author(s):  
Wen Jie Feng ◽  
Zhi Wen Zou ◽  
R.K.L. Su ◽  
Z.Z. Zou

The linear piezoelectricity theory is applied to investigate the dynamic response of coplanar interface cracks between two dissimilar piezoelectric materials subjected to the mechanical and electrical impacts. The number of cracks is arbitrary, and the interface cracks are assumed to be permeable for electric field. Integral transforms and dislocation density function are employed to reduce the problem to Cauchy singular integral equations. Numerical examples are given to show the effects of crack relative position and material property parameters on the variations of dynamic energy release rate.


1987 ◽  
Vol 54 (3) ◽  
pp. 635-641 ◽  
Author(s):  
J. R. Walton

The steady-state propagation of a semi-infinite, antiplane shear crack is reconsidered for a general, infinite, homogeneous and isotropic linearly viscoelastic body. As with an earlier study, the inertial term in the equation of motion is retained and the shear modulus is only assumed to be positive, continuous, decreasing, and convex. A Barenblatt type failure zone is introduced in order to cancel the singular stress, and a numerically convenient expression for the dynamic Energy Release Rate (ERR) is derived for a rather general class of crack face loadings. The ERR is shown to have a complicated dependence on crack speed and material properties with significant qualitative differences between viscoelastic and elastic material. The results are illustrated with numerical calculations for both power-law material and a standard linear solid.


Sign in / Sign up

Export Citation Format

Share Document