close coal seams
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

4
(FIVE YEARS 0)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yu Xiong ◽  
Dezhong Kong ◽  
Zhijie Wen ◽  
Guiyi Wu ◽  
Qinzhi Liu

AbstractAiming at the problem of coal face failure of lower coal seam under the influence of repeated mining in close coal seams, with the working face 17,101 as a background, the coal samples mechanics test clarified the strength characteristics of the coal face under repeated mining, through similar simulation experiments, the development of stable roof structure and surrounding rock cracks under repeated mining of close coal seams are further explored. And based on this, establish a coal face failure mechanics model to comprehensively analyze the influence of multiple roof structural instabilities on the stability of the coal face. Finally, numerical simulation is used to further supplement and verify the completeness and rationality of similar simulation experiment and theoretical analysis results. The results show that: affected by repeated mining disturbances, the cracks in the coal face are relatively developed, the strength of the coal body is reduced, and the coal face is more prone to failure under the same roof pressure; During the mining of coal seam 17#, the roofs of different layers above the stope form two kinds of "arch" structures and one kind of “voussoir beam” structure, and there are three different degrees of frequent roof pressure phenomenon, which is easy to cause coal face failure; Under repeated mining of close coal seams, the roof pressure acting on the coal face is not large. The main controlling factor of coal face failure is the strength of the coal body, and the form of coal face failure is mostly the shear failure of soft coal. The research results can provide a theoretical basis for coal face failure under similar conditions.


2021 ◽  
pp. 014459872110093
Author(s):  
Wei Zhang ◽  
Jiawei Guo ◽  
Kaidi Xie ◽  
Jinming Wang ◽  
Liang Chen ◽  
...  

In order to mine the coal seam under super-thick hard roof, improve the utilization rate of resources and prolong the remaining service life of the mine, a case study of the Gaozhuang Coal Mine in the Zaozhuang Mining Area has been performed in this paper. Based on the specific mining geological conditions of ultra-close coal seams (#3up and #3low coal seams), their joint systematic analysis has been performed, with the focus made in the following three aspects: (i) prevention of rock burst under super-thick hard roof, (ii) deformation control of surrounding rock of roadways in the lower coal seam, and (iii) fire prevention in the goaf of working face. Given the strong bursting tendency observed in upper coal seam and lower coal seam, the technology of preventing rock burst under super-thick hard roof was proposed, which involved setting of narrow section coal pillars to protect roadways and interleaving layout of working faces. The specific supporting scheme of surrounding rock of roadways in the #3low1101 working face was determined, and the grouting reinforcement method of local fractured zones through Marithan was further proposed, to ensure the deformation control of surrounding rock of roadways in lower coal seams. The proposed fire prevention technology envisaged goaf grouting and spraying to plug leaks, which reduced the hazard of spontaneous combustion of residual coals in mined ultra-close coal seams. The technical and economic improvements with a direct economic benefit of 5.55 million yuan were achieved by the application of the proposed comprehensive technical support. The research results obtained provide a theoretical guidance and technical support of safe mining strategies of close coal seams in other mining areas.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaobin Li ◽  
Wenrui He ◽  
Zhuhe Xu

Extremely close coal seam groups are widely distributed in China, and the main mining method is downward mining. In the downward mining process of extremely close coal seam groups, the violent movement of overlying strata will cause the redistribution of surrounding rock stress. It not only produces stress concentration on the pillar but also causes the roof of the lower coal seam to be broken and difficulty in maintaining the mining roadway. In this study, the physical similitude modeling method and field observations were used to study the breakage and migration law of overlying strata in the downward mining of extremely close coal seams. Results show that in the process of mining upper coal seam, the first weighting step of the main roof is 37.5 m and the periodic weighting step is 12.5 m. The occurrence of strata separation is beneficial to the prediction of roof weighting. When the working face advances to 25 m, the rock stratum approximating a parallelogram of height 5 m does not collapse, and the working face is relatively dangerous. When mining the lower coal seam, the overall pressure of the working face is large, but the periodic weighting of the working face is not obvious. The first collapse step of the immediate roof is 15 m. When mining the upper and lower coal seams, the subsidence of the monitoring point increases significantly at 17.5 and 15 m, respectively. The roof collapse of the lower coal seam occurs 2.5 m ahead of that of the upper coal seam. The hydraulic value of the support, roof fall height, and sloughing depth in the entire working face reach the maximum at the coal pillar, and the extreme points at the coal pillar are relatively concentrated. This research provides some guidance for the safe and efficient mining of extremely close coal seams in the future.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0207447 ◽  
Author(s):  
Gang Wu ◽  
Xinqiu Fang ◽  
Hualin Bai ◽  
Minfu Liang ◽  
Xiukun Hu
Keyword(s):  

2017 ◽  
Vol 36 (5) ◽  
pp. 1265-1278 ◽  
Author(s):  
Wei Zhang ◽  
Dongsheng Zhang ◽  
Dahong Qi ◽  
Wenmin Hu ◽  
Ziming He ◽  
...  

The primary problem needed to be solved in mining close coal seams is to understand quantitatively the floor failure depth of the upper coal seam. In this study, according to the mining and geological conditions of close coal seams (#10 and #11 coal seams) in the Second Mining Zone of Caocun Coal Mine, the mechanical model of floor failure of the upper coal seam was built. Calculation results show that the advanced abutment pressure caused by the mining of the upper coal seam, resulted in the floor failure depth with a maximum of 26.1 m, which is 2.8 times of the distance between two coal seams. On this basis, the mechanical model of the remaining protective coal pillar was established and the stress distribution status under the remaining protective coal pillar in the 10# coal seam was then theoretically analysed. Analysis results show that stress distribution under the remaining protective coal pillar was significantly heterogeneous. It was also determined that the interior staggering distance should be at least 4.6 m to arrange the gateways of the #209 island coalface in the lower coal seam. Taken into account a certain safety coefficient (1.6–1.7), as well as reducing the loss of coal resources, the reasonable interior staggering distance was finally determined as 7.5 m. Finally, a novel method using radon was initially proposed to detect the floor failure depth of the upper coal seam in mining close coal seams, which could overcome deficiencies of current research methods.


2014 ◽  
Vol 24 (5) ◽  
pp. 597-601 ◽  
Author(s):  
Jianlin Xie ◽  
Jialin Xu ◽  
Feng Wang ◽  
Jiekai Guo ◽  
Donglin Liu

Sign in / Sign up

Export Citation Format

Share Document