integer programing
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

2020 ◽  
Vol 6 ◽  
pp. e329
Author(s):  
Santiago-Omar Caballero-Morales

Logistics is the aspect of the supply chain which is responsible of the efficient flow and delivery of goods or services from suppliers to customers. Because a logistic system involves specialized operations such as inventory control, facility location and distribution planning, the logistic professional requires mathematical, technological and managerial skills and tools to design, adapt and improve these operations. The main research is focused on modeling and solving logistic problems through specialized tools such as integer programing and meta-heuristics methods. In practice, the use of these tools for large and complex problems requires mathematical and computational proficiency. In this context, the present work contributes with a coded suite of models to explore relevant problems by the logistic professional, undergraduate/postgraduate student and/or academic researcher. The functions of the coded suite address the following: (1) generation of test instances for routing and facility location problems with real geographical coordinates; (2) computation of Euclidean, Manhattan and geographical arc length distance metrics for routing and facility location problems; (3) simulation of non-deterministic inventory control models; (4) importing/exporting and plotting of input data and solutions for analysis and visualization by third-party platforms; and (5) designing of a nearest-neighbor meta-heuristic to provide very suitable solutions for large vehicle routing and facility location problems. This work is completed by a discussion of a case study which integrates the functions of the coded suite.


2019 ◽  
Vol 4 (1) ◽  
pp. 94-105
Author(s):  
Shuaian Wang ◽  
Ran Yan ◽  
Lingxiao Wu ◽  
Dong Yang

Purpose The purpose of this study is to propose a mathematical optimization model to solve the yacht mooring area re-allocation problem (YMARP). The objective of the problem is to allow the maximum number of yachts to be moored at their ideal mooring areas. Design/methodology/approach In this paper, the YMARP is introduced, formally defined and discussed. The authors develop a 0-1 integer programing optimization model for the problem, which can be solved efficiently using off-shelf solvers. The performance of the model is tested on extensive numerical experiments. Findings The results of the numerical experiments demonstrate that the proposed model can solve the YMARP very efficiently using off-shelf solvers like CPLEX. In particular, problems with up to 30,000 yachts and 400 mooring areas can be solved to optimum within 30 s. Originality/value This study is one of the preliminary studies to consider problems arising in yacht management in a quantitative manner. The proposed model has three main merits. First, it enables the government to better manage yachts and mooring areas. Second, with more yacht owners assigned with ideal mooring areas, the model helps reduce the traveling time of the yacht owners to yacht mooring areas. Third, by reducing the traveling time of the yacht owners, the model contributes to lessening the traffic burden in cities.


2019 ◽  
Vol 13 ◽  
pp. 174830261986853 ◽  
Author(s):  
Dong Zhang ◽  
Xiang Lin ◽  
Xiang Chen

Network Function Virtualization addresses the defect of traditional middleboxes and enables operators to implement new services through a process named Service Function Chain mapping. Service Function Chain is composed by a sequence of Virtual Network Functions (VNFs) which is deployed in shared platforms. Service Function Chain with parallel VNFs is proposed to reduce the delivery latency. In this paper, a multiple instances mapping scheme named MIM is proposed to resolve the performance bottleneck introduced by the imbalance of parallel VNFs. A integer programing model is established to describe the multiple instances mapping problem based on queuing theory, and a double layer Genetic Algorithm is used to allocate parallel VNFs with multiple instances. Simulation results show that the multiple instances mapping scheme can improve the performance of Service Function Chain with parallel VNFs effectively.


Sign in / Sign up

Export Citation Format

Share Document