pyroelectric constant
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad A. Barique ◽  
Yasuhiro Matsuda ◽  
Shigeru Tasaka

AbstractDielectric behavior in paracrystalline poly(vinyl trifluoroacetate) was investigated from the viewpoint of ferroelectricity. This polymer has a large CF3 dipole moment (2.3 Debye) and structural defects due to the atactic sequence in its chain conformation. It is possible to rotate the dipoles in paracrystals with defects under high electric field. The dielectric behavior was measured from 20 to 200 °C. A large dielectric constant and dielectric relaxation strength (Δε = 17 at 110 °C) were observed in the α-relaxation region. Corona poling on the samples was carried out at DC field 80 MV/m and 80 °C. Ferroelectric D–E hysteresis loop was observed under high electric field, and the remanent polarization and coercive field at 40 °C were 15 mC/m2 and 155 MV/m, respectively. Pyroelectric response and thermally stimulated current were measured from the current through the electrode irradiated by a pulsed semiconductor laser. A pyroelectric constant of about 6 μC/m2K was observed, which was stable up to near the poling temperature. The ferroelectricity in poly(vinyltrifluoroacetate) stems from the rotation of molecular chains in its paracrystals and orientation of the CF2 dipoles. Poly(vinyltrifluoroacetate) dielectrics can be used for capacitors with high power density, artificial skins, muscles and other flexible electronics.


Author(s):  
Jayasimha Atulasimha ◽  
J. Xie ◽  
M. Richeson ◽  
K. M. Mossi

An understanding of the power that can be harvested from pyroelectric materials and its dependence on material properties, geometry and boundary condition is crucial to the design of energy harvesting devices using these materials. In this paper, simple analytical expressions are developed for ideal voltage, power and power densities as a function of pyroelectric constant, permittivity, surface area, thickness, temperature variation and rate of change for unclamped samples. Experiments are performed to specifically study the effect of geometry and are compared with theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document