multilayer ceramic capacitors
Recently Published Documents


TOTAL DOCUMENTS

391
(FIVE YEARS 59)

H-INDEX

27
(FIVE YEARS 7)

Author(s):  
Ruolong Gan ◽  
Junrong Li ◽  
Xiuhua Cao ◽  
Jun Huang ◽  
Liying Qian

The copper end paste used in multilayer ceramic capacitors sintered in nitrogen atmosphere will lead to carbon residue of organic vehicle, which will lead to the reduction of electrode conduc-tivity and high scrap rate. With an attempt to leave no residue in the sintering, the compatibility of solvents and thickeners should be improved because it has an important influence on the hi-erarchical volatilization and carbon residue of organic vehicles. In this work, the volatility of different solvents was compared and several solvents were mixed in a definite proportion to prepare an organic vehicle with polyacrylate resins. The hierarchical volatility and solubility parameters of mixed solvents were adjusted effectively by changing proportions of different components, the thermogravimetric curves of resins and organic vehicles were measured by thermogravimetric analyzer, the effect of solubility parameter on the dissolvability of resins in the solvent and the residual of organic vehicles were studied. Results showed that the hierar-chical volatilization of solvents can be obtained by mixing different solvents; the intrinsic vis-cosity of the organic vehicle is higher and the thermal decomposition residue of polyacrylate resins is lower when the solubility parameters of mixed solvents and polyacrylate resins are closer. The low residual sintering of organic vehicles can be achieved by using the mixed solvent with hierarchical volatility and approximate solubility parameters as resins.


2021 ◽  
Vol 10 (6) ◽  
pp. 1153-1193
Author(s):  
Peiyao Zhao ◽  
Ziming Cai ◽  
Longwen Wu ◽  
Chaoqiong Zhu ◽  
Longtu Li ◽  
...  

AbstractThe growing demand for high-power-density electric and electronic systems has encouraged the development of energy-storage capacitors with attributes such as high energy density, high capacitance density, high voltage and frequency, low weight, high-temperature operability, and environmental friendliness. Compared with their electrolytic and film counterparts, energy-storage multilayer ceramic capacitors (MLCCs) stand out for their extremely low equivalent series resistance and equivalent series inductance, high current handling capability, and high-temperature stability. These characteristics are important for applications including fast-switching third-generation wide-bandgap semiconductors in electric vehicles, 5G base stations, clean energy generation, and smart grids. There have been numerous reports on state-of-the-art MLCC energy-storage solutions. However, lead-free capacitors generally have a low-energy density, and high-energy density capacitors frequently contain lead, which is a key issue that hinders their broad application. In this review, we present perspectives and challenges for lead-free energy-storage MLCCs. Initially, the energy-storage mechanism and device characterization are introduced; then, dielectric ceramics for energy-storage applications with aspects of composition and structural optimization are summarized. Progress on state-of-the-art energy-storage MLCCs is discussed after elaboration of the fabrication process and structural design of the electrode. Emerging applications of energy-storage MLCCs are then discussed in terms of advanced pulsed power sources and high-density power converters from a theoretical and technological point of view. Finally, the challenges and future prospects for industrialization of lab-scale lead-free energy-storage MLCCs are discussed.


2021 ◽  
Vol 62 (10) ◽  
pp. 1583-1588
Author(s):  
Nobuo Nishioka ◽  
Yui Hosono ◽  
Sohei Sukenaga ◽  
Noritaka Saito ◽  
Kunihiko Nakashima

Author(s):  
Nikolay A. Sekushin ◽  
Nadezhda A. Zhuk

A phase-pure mixed oxide of the composition Bi2MgNbTaO9 with a pyrochlore structure was obtained by the ceramic synthesis method. The sample was characterized by the methods of X-ray phase and EDS analyzes, electron scanning microscopy. The electrical properties of samples of different thicknesses were investigated by impedance spectroscopy. The unit cell parameter is a = 1.0544 nm (sp. gr. Fd3m). As a result of modeling the impedance hodographs, an equivalent circuit is proposed that satisfactorily describes the electrical behavior of the sample. Bi2MgNbTaO9 is characterized by a high activation energy of 1.28 eV; moderately high dielectric constant ~62–71 and dielectric loss tangent ~0.003 at 1 MHz and 18 °С. No ionic transfer was detected. The investigated ceramics can be used to create multilayer ceramic capacitors


Sign in / Sign up

Export Citation Format

Share Document