nutrient removal rate
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Bruno Menezes Galindro ◽  
Rafael Garcia Lopes ◽  
Roberto Bianchini Derner ◽  
Sebastião Roberto Soares

The use of microalgae biomass in order to obtain lipids is an important alternative to be studied and it has great potential to be applied in order to produce food and biofuel, for instance. However, there are some processes of its production which need further study, such as the cultivation inputs. A possibility for an alternative raw material is the effluent from superintensive shrimp cultivation with bioflocs (BF). Therefore, the objective of this study was to evaluate the productivity and nutrient removal rate of Nannochloropsis oculata cultivation in three systems: (i) f/2 - produced integrally with chemical fertilizers, (ii) BF - using of 100% of the effluent for superintensive shrimp cultivation with bioflocs and (iii) 50/50 – using 50% of shrimp cultivation effluents  and  50% from f/2 system. The microalgae presented greater biomass growth and productitvity in BF system but less lipids and esters accumulation. Concerning nutrient removal, f/2 system showed better performance, which may indicate that the cultivation in BF systems takes longer to reach the stationary growth phase.


2012 ◽  
Vol 112 ◽  
pp. 98-104 ◽  
Author(s):  
Rodrigo A. Mohedano ◽  
Rejane H.R. Costa ◽  
Flávia A. Tavares ◽  
Paulo Belli Filho

2011 ◽  
Vol 365 ◽  
pp. 354-360 ◽  
Author(s):  
Shuo Liu ◽  
Ji Fu Wang ◽  
Bao Zhen Wang ◽  
Bing Wang ◽  
Wei Wan

To solve the problem of eutrophication in receiving water, a novel Membrane Bioreactor (MBR) with combined configuration was designed for municipal wastewater treatment and reclamation. By dividing bioreactor into three zones, the combined MBR operated under anoxic, anaerobic and aerobic conditions. It provided optimum conditions for nitrification, denitrifying and phosphate accumulating bacterial growth which resulted in high biological nutrient removal rate directly. The operational performance of combined MBR pilot plant showed that it exhibited high nutrient removal rate on Chemical oxygen demand (CODcr), total nitrogen (TN) and total phosphorus (TP). The mean value of effluent CODcr, TN and TP removal rate was 90.63%, 63.05% and 60.51% respectively during 180 days of operation. In order to obtain stable membrane flux, the combined MBR packed with fibrous bio-film carrier and added diatomite. Furthermore, it could alleviate membrane fouling effectively. As a result, the combined MBR improved effluent water quality significantly and alleviated membrane fouling remarkably.


Sign in / Sign up

Export Citation Format

Share Document