scholarly journals High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds

2012 ◽  
Vol 112 ◽  
pp. 98-104 ◽  
Author(s):  
Rodrigo A. Mohedano ◽  
Rejane H.R. Costa ◽  
Flávia A. Tavares ◽  
Paulo Belli Filho
2014 ◽  
Vol 70 (7) ◽  
pp. 1195-1204 ◽  
Author(s):  
Yonggui Zhao ◽  
Yang Fang ◽  
Yanling Jin ◽  
Jun Huang ◽  
Shu Bao ◽  
...  

The effects of water depth, coverage rate and harvest regime on nutrient removal from wastewater and high-protein biomass production were assessed in a duckweed-based (Lemna aequinoctialis) pilot-scale wastewater treatment system (10 basins × 12 m2) that is located near Dianchi Lake in China. The results indicated that a water depth of 50 cm, a coverage rate of 150% and a harvest regime of 4 days were preferable conditions, under which excellent records of high-protein duckweed (dry matter production of 6.65 g/m2/d with crude protein content of 36.16% and phosphorus content of 1.46%) were obtained at a temperature of 12–21 °C. At the same time, the system achieved a removal efficiency of 66.16, 23.1, 48.3 and 76.52% for NH4+-N, TN, TP and turbidity, respectively, with the considerable removal rate of 0.465 g/m2/d for TN and 0.134 g/m2/d for TP at a hydraulic retention time of 6 days. In additionally, it was found that a lower duckweed density could lead to higher dissolved oxygen in the water and then a higher removal percentage of NH4+-N by nitrobacteria. This study obtains the preferable operation conditions for wastewater treatment and high-protein biomass production in a duckweed-based pilot-scale system, supplying an important reference for further large-scale applications of duckweed.


2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Bruno Menezes Galindro ◽  
Rafael Garcia Lopes ◽  
Roberto Bianchini Derner ◽  
Sebastião Roberto Soares

The use of microalgae biomass in order to obtain lipids is an important alternative to be studied and it has great potential to be applied in order to produce food and biofuel, for instance. However, there are some processes of its production which need further study, such as the cultivation inputs. A possibility for an alternative raw material is the effluent from superintensive shrimp cultivation with bioflocs (BF). Therefore, the objective of this study was to evaluate the productivity and nutrient removal rate of Nannochloropsis oculata cultivation in three systems: (i) f/2 - produced integrally with chemical fertilizers, (ii) BF - using of 100% of the effluent for superintensive shrimp cultivation with bioflocs and (iii) 50/50 – using 50% of shrimp cultivation effluents  and  50% from f/2 system. The microalgae presented greater biomass growth and productitvity in BF system but less lipids and esters accumulation. Concerning nutrient removal, f/2 system showed better performance, which may indicate that the cultivation in BF systems takes longer to reach the stationary growth phase.


2011 ◽  
Vol 365 ◽  
pp. 354-360 ◽  
Author(s):  
Shuo Liu ◽  
Ji Fu Wang ◽  
Bao Zhen Wang ◽  
Bing Wang ◽  
Wei Wan

To solve the problem of eutrophication in receiving water, a novel Membrane Bioreactor (MBR) with combined configuration was designed for municipal wastewater treatment and reclamation. By dividing bioreactor into three zones, the combined MBR operated under anoxic, anaerobic and aerobic conditions. It provided optimum conditions for nitrification, denitrifying and phosphate accumulating bacterial growth which resulted in high biological nutrient removal rate directly. The operational performance of combined MBR pilot plant showed that it exhibited high nutrient removal rate on Chemical oxygen demand (CODcr), total nitrogen (TN) and total phosphorus (TP). The mean value of effluent CODcr, TN and TP removal rate was 90.63%, 63.05% and 60.51% respectively during 180 days of operation. In order to obtain stable membrane flux, the combined MBR packed with fibrous bio-film carrier and added diatomite. Furthermore, it could alleviate membrane fouling effectively. As a result, the combined MBR improved effluent water quality significantly and alleviated membrane fouling remarkably.


2013 ◽  
Vol 26 (3) ◽  
pp. 1317-1329 ◽  
Author(s):  
Donna L. Sutherland ◽  
Clive Howard-Williams ◽  
Matthew H. Turnbull ◽  
Paul A. Broady ◽  
Rupert J. Craggs

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 874
Author(s):  
Yi Ding ◽  
Shiyuan Wang ◽  
Hang Ma ◽  
Binyu Ma ◽  
Zhansheng Guo ◽  
...  

The nutrient removal and biomass production of the internal circulating fluidized bed microalgae membrane bioreactor (ICFB-MMBR) was studied under different cultivation modes, influent TOC, influent pH, and influent N/P. Platymonas helgolandica tsingtaoensis was used as the biological source. The growth of P. helgolandica tsingtaoensis and the removal efficiency of pollutants in the mixotrophy culture mode were improved compared with other culture modes. With the increased influent TOC, the average growth rate of P. helgolandica tsingtaoensis increased, and ammonia nitrogen and total phosphorus removal rate were improved. The P. helgolandica tsingtaoensis growth rate and nutrient removal efficiencies at the influent pH of 8 were the best among the different influent pH values. As the influent N/P ratio increased from 5 to 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate increased gradually. When the influent N/P ratio was higher than 20, the P. helgolandica tsingtaoensis growth rate and pollutant removal rate tended to be stable and did not significantly change with the increase of influent N/P ratio. At the proper influent conditions, the high P. helgolandica tsingtaoensis biomass and nutrient removal efficiency could be obtained in the microalgae membrane bioreactor, which could provide a theoretical basis for the application of the system for wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document