NUTRIENT REMOVAL RATE FROM THE WASTEWATER IN THE SAN JOSÉ DEL CABO WETLAND, BAJA CALIFORNIA, MÉXICO

2020 ◽  
Author(s):  
Rebeca Espinosa cortes ◽  
◽  
Tania Rodriguez Salas
2012 ◽  
Vol 112 ◽  
pp. 98-104 ◽  
Author(s):  
Rodrigo A. Mohedano ◽  
Rejane H.R. Costa ◽  
Flávia A. Tavares ◽  
Paulo Belli Filho

2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Bruno Menezes Galindro ◽  
Rafael Garcia Lopes ◽  
Roberto Bianchini Derner ◽  
Sebastião Roberto Soares

The use of microalgae biomass in order to obtain lipids is an important alternative to be studied and it has great potential to be applied in order to produce food and biofuel, for instance. However, there are some processes of its production which need further study, such as the cultivation inputs. A possibility for an alternative raw material is the effluent from superintensive shrimp cultivation with bioflocs (BF). Therefore, the objective of this study was to evaluate the productivity and nutrient removal rate of Nannochloropsis oculata cultivation in three systems: (i) f/2 - produced integrally with chemical fertilizers, (ii) BF - using of 100% of the effluent for superintensive shrimp cultivation with bioflocs and (iii) 50/50 – using 50% of shrimp cultivation effluents  and  50% from f/2 system. The microalgae presented greater biomass growth and productitvity in BF system but less lipids and esters accumulation. Concerning nutrient removal, f/2 system showed better performance, which may indicate that the cultivation in BF systems takes longer to reach the stationary growth phase.


2011 ◽  
Vol 365 ◽  
pp. 354-360 ◽  
Author(s):  
Shuo Liu ◽  
Ji Fu Wang ◽  
Bao Zhen Wang ◽  
Bing Wang ◽  
Wei Wan

To solve the problem of eutrophication in receiving water, a novel Membrane Bioreactor (MBR) with combined configuration was designed for municipal wastewater treatment and reclamation. By dividing bioreactor into three zones, the combined MBR operated under anoxic, anaerobic and aerobic conditions. It provided optimum conditions for nitrification, denitrifying and phosphate accumulating bacterial growth which resulted in high biological nutrient removal rate directly. The operational performance of combined MBR pilot plant showed that it exhibited high nutrient removal rate on Chemical oxygen demand (CODcr), total nitrogen (TN) and total phosphorus (TP). The mean value of effluent CODcr, TN and TP removal rate was 90.63%, 63.05% and 60.51% respectively during 180 days of operation. In order to obtain stable membrane flux, the combined MBR packed with fibrous bio-film carrier and added diatomite. Furthermore, it could alleviate membrane fouling effectively. As a result, the combined MBR improved effluent water quality significantly and alleviated membrane fouling remarkably.


2003 ◽  
Vol 25 (11) ◽  
pp. 1933-1957 ◽  
Author(s):  
S.E Johnson ◽  
J.M Fletcher ◽  
C.M Fanning ◽  
R.H Vernon ◽  
S.R Paterson ◽  
...  

Resources ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 57 ◽  
Author(s):  
Miguel Imaz-Lamadrid ◽  
Jobst Wurl ◽  
Ernesto Ramos-Velázquez

In arid and semiarid zones, groundwater plays a key role in the ecology and availability of freshwater. Coastal lagoons in arid zones have great importance as a refuge for species of flora and fauna, as a source of freshwater, and for recreational purposes for local communities and tourism. In addition, as environments under natural stress, they are suffering pressure from anthropogenic activities and climate change, especially in zones with intense touristic development as in the case of the Baja California Peninsula in northwest Mexico. In this paper, we analyze the future of a coastal lagoon impacted by climate change and anthropogenic pressures. We constructed a groundwater MODFLOW-SWI2 model to predict changes in freshwater–saltwater inputs and correlated them with the geospatial analysis of the distribution and evolution of the water body and surrounding vegetation. The methodology was applied to the San Jose lagoon, one of the most important wetlands in the Baja California peninsula, which had been affected by anthropogenic activities and endangered by climate change. According to our water balance, the deficit of the San Jose aquifer will increase by 2040 as a result of climate change. The water table north of the lagoon will drop, affecting the amount of freshwater inflow. This reduction, together with an increase of evapotranspiration and the sea-level rise, will favor an increase of mineralization, reducing the surface water and groundwater quality and in consequence affecting the vegetation cover. Without proper management and adequate measures to mitigate these impacts, the lagoon may disappear as a freshwater ecosystem. Results of this research indicate that the use of a groundwater flow model, together with a geospatial analysis provide effective tools to predict scenarios for the future of coastal lagoons, and serve as a basis for land planning, nature conservation, and sustainable management of these ecosystems.


2014 ◽  
Vol 70 (7) ◽  
pp. 1195-1204 ◽  
Author(s):  
Yonggui Zhao ◽  
Yang Fang ◽  
Yanling Jin ◽  
Jun Huang ◽  
Shu Bao ◽  
...  

The effects of water depth, coverage rate and harvest regime on nutrient removal from wastewater and high-protein biomass production were assessed in a duckweed-based (Lemna aequinoctialis) pilot-scale wastewater treatment system (10 basins × 12 m2) that is located near Dianchi Lake in China. The results indicated that a water depth of 50 cm, a coverage rate of 150% and a harvest regime of 4 days were preferable conditions, under which excellent records of high-protein duckweed (dry matter production of 6.65 g/m2/d with crude protein content of 36.16% and phosphorus content of 1.46%) were obtained at a temperature of 12–21 °C. At the same time, the system achieved a removal efficiency of 66.16, 23.1, 48.3 and 76.52% for NH4+-N, TN, TP and turbidity, respectively, with the considerable removal rate of 0.465 g/m2/d for TN and 0.134 g/m2/d for TP at a hydraulic retention time of 6 days. In additionally, it was found that a lower duckweed density could lead to higher dissolved oxygen in the water and then a higher removal percentage of NH4+-N by nitrobacteria. This study obtains the preferable operation conditions for wastewater treatment and high-protein biomass production in a duckweed-based pilot-scale system, supplying an important reference for further large-scale applications of duckweed.


Author(s):  
Georgios Samiotis ◽  
Kostas Stamatakis ◽  
Elisavet Amanatidou

Abstract Industrial wastewaters are recognized as a valuable resource, however their disposal without proper treatment can result in environmental deterioration. The associated environmental/operational cost of wastewater treatment necessitates upgrade of applied processes towards the goals of sustainability and mitigation of climate change. The implementation of cyanobacteria-based processes can contribute to these goals via resources recovery, production of high-value products, carbon fixation and green-energy production. The present study evaluates the cyanobacterium Synechococcus elongatus PCC 7942 (S7942) as a biological component for novel and sustainable alternatives to typical biological nutrient removal processes. Valuable results regarding cultivation temperature boundaries, applied disinfection techniques and analytical methods, as well as regarding relations between parameters expressing S7942 biomass concentration are presented. The results show that at typical industrial wastewater temperatures, S7942 efficiently grew and removed nitrates from treated snack-industry's wastewater. Moreover, in cultures with treated and relatively saline dairy wastewater, its growth rate slightly decreased, but nevertheless nitrates removal rate remained efficiently high. A comparison between typical denitrification processes and the proposed nutrient removal process indicated that a S7942-based system may constitute an alternative or a supplementary to denitrification process. Thus, Synechococcus elongatus PCC 7942 proved to be a potent candidate towards sustainable industrial wastewater treatment applications.


Sign in / Sign up

Export Citation Format

Share Document