total solute content
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

4
(FIVE YEARS 0)

2014 ◽  
Vol 78 (5) ◽  
pp. 1265-1286 ◽  
Author(s):  
D. Matýsek ◽  
J. Jirásek ◽  
M. Osovský ◽  
P. Skupien

AbstractThis study describes the occurrences of sulfate minerals in mines of the Czech part of the Upper Silesian Basin. This mineralization originates from the oxidation of Fe disulfides contained in the coal matrix and enclosing sediments. The oxidation occurs in the presence of formational brines and chemotrophic bacteria. The brines have a pH between 6.3 and 8.5 and total solute content of up to 300 g/l. They are rich in Na, Ca, K, Mg, Ba and Sr and Cl–is the major anion. The minerals of the pickeringite–halotrichite series with coexisting magnesiocopiapite are formed primarily in drier places and areas where the water is only slightly mineralized. In more humid places where the brines are more concentrated, a diverse assemblage of up to 20 different sulfates are found (e.g. natrojarosite, sideronatrite, metasideronatrite, tamarugite, magnesiocopiapite, bílinite, starkeyite, blödite, rozenite and siderotil). These sulfates are accompanied by halite, sulfur, goethite and a number of phases of uncertain identity, such as sulfates containing Sr andREE. This is an example of mineral paragenesis formed by weathering in a saline evaporite environment, which is extremely rare in Europe but is found in arid regions elsewhere (e.g. in the Atacama Desert in Chile).


2006 ◽  
Vol 519-521 ◽  
pp. 339-344 ◽  
Author(s):  
M.R. Clinch ◽  
S.J. Harris ◽  
W. Hepples ◽  
N.J.H. Holroyd ◽  
M.J. Lawday ◽  
...  

A systematic study of the precipitation processes in high strength Al-Zn-Mg-Cu alloys has been conducted. A series of experimental alloys was prepared with varying Zn:Mg ratio, but equivalent total solute content, to be representative of those used in applications which demand a combination of strength, fracture toughness and resistance to environmentally sensitive cracking mechanisms. Artificial ageing curves were constructed for each alloy, based upon 7xxx series duplex treatments widely used in industry. Ageing kinetics were investigated beyond peak strength into the overaged condition, since this is known to promote the most favourable balance of properties. Differential scanning calorimetry (DSC) and transmission election microscopy (TEM) observations were made on the alloys throughout the ageing process to fully understand the precipitation events occuring. For a particular overageing treatment, higher Zn:Mg ratio alloys were consistently found to be at a more advanced stage of precipitation while higher strengths were retained at low Zn:Mg ratios. Grain boundary characteristics, such as particle size and precipitate free zone width, were also influenced by Zn:Mg ratio at a given strength level. This paper provides new understanding of precipitation kinetics and the control of important microstructural features which influence the balance of properties in 7xxx series aluminium alloys.


2004 ◽  
Vol 4 (3) ◽  
pp. 715-728 ◽  
Author(s):  
A. Marinoni ◽  
P. Laj ◽  
K. Sellegri ◽  
G. Mailhot

Abstract. The chemical composition of cloud water was investigated during the winter-spring months of 2001 and 2002 at the Puy de Dôme station (1465 m above sea level, 45°46′22′′ N, 2°57′43′′ E) in an effort to characterize clouds in the continental free troposphere. Cloud droplets were sampled with single-stage cloud collectors (cut-off diameter approximately 7 µm) and analyzed for inorganic and organic ions, as well as total dissolved organic carbon. Results show a very large variability in chemical composition and total solute concentration of cloud droplets, ranging from a few mg l-1 to more than 150 mg l-1. Samplings can be classified in three different categories with respect to their total ionic content and relative chemical composition: background continental (BG, total solute content lower than 18 mg l-1), anthropogenic continental (ANT, total solute content from 18 to 50 mg l-1), and special events (SpE, total solute content higher than 50 mg l-1). The relative chemical composition shows an increase in anthropogenic-derived species (NO3-, SO42- and NH4+) from BG to SpE, and a decrease in dissolved organic compounds (ionic and non-ionic) that are associated with the anthropogenic character of air masses. We observed a high contribution of solute in cloud water derived from the dissolution of gas phase species in all cloud events. This was evident from large solute fractions of nitrate, ammonium and mono-carboxylic acids in cloud water, relative to their abundance in the aerosol phase. The comparison between droplet and aerosol composition clearly shows the limited ability of organic aerosols to act as cloud condensation nuclei. The strong contribution of gas-phase species limits the establishment of direct relationships between cloud water solute concentration and LWC that are expected from nucleation scavenging.


2004 ◽  
Vol 4 (1) ◽  
pp. 849-886 ◽  
Author(s):  
A. Marinoni ◽  
P. Laj ◽  
K. Sellegri ◽  
G. Mailhot

Abstract. The chemical composition of cloud water was investigated during the winter-spring months of 2001 and 2002 at the Puy de Dôme station (1465 m above sea level, 45°46'22'' N, 2°57'43' E) in an effort to characterize clouds in the continental free troposphere. Cloud droplets were sampled with single-stage cloud collectors (cut-off diameter approximately 7 μm) and analyzed for inorganic and organic ions, as well as total dissolved organic carbon. Results show a very large variability in chemical composition and total solute concentration of cloud droplets, ranging from a few mg l−1 to more than 150 mg l−1. Samplings can be classified in three different categories with respect to their total ionic content and relative chemical composition: background continental (BG, total solute content lower than 18 mg l−1), anthropogenic continental (ANT, total solute content from 18 to 50 mg l−1), and special events (SpE, total solute content higher than 50 mg l−1). The relative chemical composition shows an increase in anthropogenic-derived species (NO3−, SO42− and NH4+) from BG to SpE, and a decrease in dissolved organic compounds (ionic and non-ionic) that are associated with the anthropogenic character of air masses. We observed a high contribution of solute in cloud water derived from the dissolution of gas phase species in all cloud events. This was evident from large solute fractions of nitrate, ammonium and mono-carboxylic acids in cloud water, relative to their abundance in the aerosol phase. The comparison between droplet and aerosol composition clearly shows the limited ability of organic aerosols to act as cloud condensation nuclei. The strong contribution of gas-phase species limits the establishment of direct relationships between cloud water solute concentration and LWC that are expected from nucleation scavenging.


1999 ◽  
Vol 580 ◽  
Author(s):  
G.D. Hibbard ◽  
U. Erb ◽  
K.T. Aust ◽  
G. Palumbo

AbstractIn this study, the effect of grain size distribution on the thermal stability of electrodeposited nanocrystalline nickel was investigated by pre-annealing material such that a limited amount of abnormal grain growth was introduced. This work was done in an effort to understand the previously reported, unexpected effect, of increasing thermal stability with decreasing grain size seen in some nanocrystalline systems. Pre-annealing produced a range of grain size distributions in materials with relatively unchanged crystallographic texture and total solute content. Subsequent thermal analysis of the pre-annealed samples by differential scanning calorimetry showed that the activation energy of further grain growth was unchanged from the as-deposited nanocrystalline nickel.


Sign in / Sign up

Export Citation Format

Share Document