scholarly journals Cloud chemistry at the Puy de Dôme: variability and relationships with environmental factors

2004 ◽  
Vol 4 (3) ◽  
pp. 715-728 ◽  
Author(s):  
A. Marinoni ◽  
P. Laj ◽  
K. Sellegri ◽  
G. Mailhot

Abstract. The chemical composition of cloud water was investigated during the winter-spring months of 2001 and 2002 at the Puy de Dôme station (1465 m above sea level, 45°46′22′′ N, 2°57′43′′ E) in an effort to characterize clouds in the continental free troposphere. Cloud droplets were sampled with single-stage cloud collectors (cut-off diameter approximately 7 µm) and analyzed for inorganic and organic ions, as well as total dissolved organic carbon. Results show a very large variability in chemical composition and total solute concentration of cloud droplets, ranging from a few mg l-1 to more than 150 mg l-1. Samplings can be classified in three different categories with respect to their total ionic content and relative chemical composition: background continental (BG, total solute content lower than 18 mg l-1), anthropogenic continental (ANT, total solute content from 18 to 50 mg l-1), and special events (SpE, total solute content higher than 50 mg l-1). The relative chemical composition shows an increase in anthropogenic-derived species (NO3-, SO42- and NH4+) from BG to SpE, and a decrease in dissolved organic compounds (ionic and non-ionic) that are associated with the anthropogenic character of air masses. We observed a high contribution of solute in cloud water derived from the dissolution of gas phase species in all cloud events. This was evident from large solute fractions of nitrate, ammonium and mono-carboxylic acids in cloud water, relative to their abundance in the aerosol phase. The comparison between droplet and aerosol composition clearly shows the limited ability of organic aerosols to act as cloud condensation nuclei. The strong contribution of gas-phase species limits the establishment of direct relationships between cloud water solute concentration and LWC that are expected from nucleation scavenging.

2004 ◽  
Vol 4 (1) ◽  
pp. 849-886 ◽  
Author(s):  
A. Marinoni ◽  
P. Laj ◽  
K. Sellegri ◽  
G. Mailhot

Abstract. The chemical composition of cloud water was investigated during the winter-spring months of 2001 and 2002 at the Puy de Dôme station (1465 m above sea level, 45°46'22'' N, 2°57'43' E) in an effort to characterize clouds in the continental free troposphere. Cloud droplets were sampled with single-stage cloud collectors (cut-off diameter approximately 7 μm) and analyzed for inorganic and organic ions, as well as total dissolved organic carbon. Results show a very large variability in chemical composition and total solute concentration of cloud droplets, ranging from a few mg l−1 to more than 150 mg l−1. Samplings can be classified in three different categories with respect to their total ionic content and relative chemical composition: background continental (BG, total solute content lower than 18 mg l−1), anthropogenic continental (ANT, total solute content from 18 to 50 mg l−1), and special events (SpE, total solute content higher than 50 mg l−1). The relative chemical composition shows an increase in anthropogenic-derived species (NO3−, SO42− and NH4+) from BG to SpE, and a decrease in dissolved organic compounds (ionic and non-ionic) that are associated with the anthropogenic character of air masses. We observed a high contribution of solute in cloud water derived from the dissolution of gas phase species in all cloud events. This was evident from large solute fractions of nitrate, ammonium and mono-carboxylic acids in cloud water, relative to their abundance in the aerosol phase. The comparison between droplet and aerosol composition clearly shows the limited ability of organic aerosols to act as cloud condensation nuclei. The strong contribution of gas-phase species limits the establishment of direct relationships between cloud water solute concentration and LWC that are expected from nucleation scavenging.


2019 ◽  
Author(s):  
Tao Li ◽  
Zhe Wang ◽  
Yaru Wang ◽  
Chen Wu ◽  
Yiheng Liang ◽  
...  

Abstract. To investigate the cloud water chemistry and the effects of cloud processes on aerosol properties, comprehensive field observations of cloud water, aerosols, and gas-phase species were conducted at a mountaintop site in Hong Kong in October and November 2016. The chemical composition of cloud water including water-soluble ions, dissolved organic matter (DOM), carbonyl compounds, carboxylic acids, and trace metals was quantified. The measured cloud water was very acidic with a mean pH of 3.63, as the ammonium (174 μeq L−1) was insufficient for neutralizing the dominant sulfate (230 μeq L−1) and nitrate (160 μeq L−1). Substantial DOM was found in cloud water, with carbonyl compounds and carboxylic acids accounting for 18.2 % and 5.6 %, respectively. Different from previous observations, concentrations of methylglyoxal (19.1 μM) and glyoxal (6.72 μM) were higher than that of formaldehyde (1.59 μM). The partitioning of carbonyls between cloud water and the gas phase was also investigated. The measured aqueous fractions of dicarbonyls were comparable to the theoretical estimations, while significant aqueous-phase supersaturation was found for less soluble monocarbonyls, suggesting complicated effects of both physical and chemical processes. In-cloud oxidation played an important role in increasing DOM and sulfate in the cloud water. Abundant glyoxal is suggested to be the most likely precursor of cloud water organics. The aqueous formation of organics was enhanced by photochemistry and under less-acidic conditions. Moreover, as a result of the cloud processes, DOM mass fractions were found to be significantly elevated in in-cloud aerosols, which was likely to contribute to the increase in droplet-mode mass fraction of cloud processed aerosols. This study demonstrates the significant role of clouds in altering the chemical composition and physical properties of aerosols via scavenging and aqueous processes, and provides valuable information about aerosol–cloud interactions in subtropical and coastal regions.


2017 ◽  
Vol 17 (16) ◽  
pp. 9885-9896 ◽  
Author(s):  
Jiarong Li ◽  
Xinfeng Wang ◽  
Jianmin Chen ◽  
Chao Zhu ◽  
Weijun Li ◽  
...  

Abstract. The chemical composition of 39 cloud samples and droplet size distributions in 24 cloud events were investigated at the summit of Mt. Tai from July to October 2014. Inorganic ions, organic acids, metals, HCHO, H2O2, sulfur(IV), organic carbon, and elemental carbon as well as pH and electrical conductivity were analyzed. The acidity of the cloud water significantly decreased from a reported value of pH 3.86 during 2007–2008 (Guo et al., 2012) to pH 5.87 in the present study. The concentrations of nitrate and ammonium were both increased since 2007–2008, but the overcompensation of ammonium led to an increase in the mean pH value. The microphysical properties showed that cloud droplets were smaller than 26.0 µm and most were in the range of 6.0–9.0 µm at Mt. Tai. The maximum droplet number concentration (Nd) was associated with a droplet size of 7.0 µm. High liquid water content (LWC) values could facilitate the formation of larger cloud droplets and broadened the droplet size distribution. Cloud droplets exhibited a strong interaction with atmospheric aerosols. Higher PM2. 5 levels resulted in higher concentrations of water-soluble ions and smaller sizes with increased numbers of cloud droplets. The lower pH values were likely to occur at higher PM2. 5 concentrations. Clouds were an important sink for soluble materials in the atmosphere. The dilution effect of cloud water should be considered when estimating concentrations of soluble components in the cloud phase.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 965
Author(s):  
Zoé Perrin ◽  
Nathalie Carrasco ◽  
Audrey Chatain ◽  
Lora Jovanovic ◽  
Ludovic Vettier ◽  
...  

Titan’s haze is strongly suspected to be an HCN-derived polymer, but despite the first in situ measurements by the ESA-Huygens space probe, its chemical composition and formation process remain largely unknown. To investigate this question, we simulated the atmospheric haze formation process, experimentally. We synthesized analogues of Titan’s haze, named Titan tholins, in an irradiated N2–CH4 gas mixture, mimicking Titan’s upper atmosphere chemistry. HCN was monitored in situ in the gas phase simultaneously with the formation and evolution of the haze particles. We show that HCN is produced as long as the particles are absent, and is then progressively consumed when the particles appear and grow. This work highlights HCN as an effective precursor of Titan’s haze and confirms the HCN-derived polymer nature of the haze.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1441
Author(s):  
Youssef Chebli ◽  
Samira El Otmani ◽  
Mouad Chentouf ◽  
Jean-Luc Hornick ◽  
Jean-François Cabaraux

Forest rangelands contribute largely to goat diets in the Mediterranean area. Information about browsed plant quality is essential for adequate feeding management. The purpose of this study was to evaluate the temporal changes in chemical composition and in vitro digestibility of the main plant species selected by goats in the Southern Mediterranean forest rangeland during two consecutive years; these were very contrasted (dry and wet). The browsed species were composed of herbaceous, eleven shrubs, and four tree species. Overall, large variability in chemical composition, in vitro organic matter digestibility (IVOMD), and metabolizable energy (ME) was observed among species, grazing season (spring, summer, and autumn), and years within each species. Crude protein (CP) content varied from 60 to 240 g/kg dry matter (DM). The fiber fractions, except for Quercus suber, increased significantly by advancing maturity. Due to the water stress, the lignin level presented a higher value during the spring of the dry year. Condensed tannin (CT) content varied from 2 to 184 g/kg DM. CP, IVOMD, and ME showed a negative correlation with lignin and CT. Based on the results presented herein, it is concluded that the nutritive value of the browsed plant species was highest in the spring and lowest during the summer and autumn of both studied years. With a good grazing management strategy, the selected plant species by goats could guarantee high-quality feeding resources throughout the year.


2000 ◽  
Vol 15 (5) ◽  
pp. 1037-1040 ◽  
Author(s):  
N. Q. Chinh ◽  
F. Csikor ◽  
Zs. Kovács ◽  
J. Lendvai

Plastic instabilities were investigated by the depth-sensing microhardness test in binary high-purity Al–Mg alloys with different Mg contents. During the tests the applied load was increased from 0 to 2000 mN at constant loading rate. The instabilities appeared as characteristic steps in the load–depth curves during indentation. It was shown that the occurrence and development of the plastic instabilities depend strongly on the solute content. Furthermore, the plastic instabilities occurred only when the solute concentration was larger than a critical value, C0. From room-temperature tests on Al–Mg alloys, C0 was found to be 0.86 wt% Mg. The critical concentration, which is necessary to get plastic instabilities, was also interpreted theoretically.


2012 ◽  
Vol 12 (21) ◽  
pp. 10239-10255 ◽  
Author(s):  
L. T. Padró ◽  
R. H. Moore ◽  
X. Zhang ◽  
N. Rastogi ◽  
R. J. Weber ◽  
...  

Abstract. Aerosol composition and mixing state near anthropogenic sources can be highly variable and can challenge predictions of cloud condensation nuclei (CCN). The impacts of chemical composition on CCN activation kinetics is also an important, but largely unknown, aspect of cloud droplet formation. Towards this, we present in-situ size-resolved CCN measurements carried out during the 2008 summertime August Mini Intensive Gas and Aerosol Study (AMIGAS) campaign in Atlanta, GA. Aerosol chemical composition was measured by two particle-into-liquid samplers measuring water-soluble inorganic ions and total water-soluble organic carbon. Size-resolved CCN data were collected using the Scanning Mobility CCN Analysis (SMCA) method and were used to obtain characteristic aerosol hygroscopicity distributions, whose breadth reflects the aerosol compositional variability and mixing state. Knowledge of aerosol mixing state is important for accurate predictions of CCN concentrations and that the influence of an externally-mixed, CCN-active aerosol fraction varies with size from 31% for particle diameters less than 40 nm to 93% for accumulation mode aerosol during the day. Assuming size-dependent aerosol mixing state and size-invariant chemical composition decreases the average CCN concentration overprediction (for all but one mixing state and chemical composition scenario considered) from over 190–240% to less than 20%. CCN activity is parameterized using a single hygroscopicity parameter, κ, which averages to 0.16 ± 0.07 for 80 nm particles and exhibits considerable variability (from 0.03 to 0.48) throughout the study period. Particles in the 60–100 nm range exhibited similar hygroscopicity, with a κ range for 60 nm between 0.06–0.076 (mean of 0.18 ± 0.09). Smaller particles (40 nm) had on average greater κ, with a range of 0.20–0.92 (mean of 0.3 ± 0.12). Analysis of the droplet activation kinetics of the aerosol sampled suggests that most of the CCN activate as rapidly as calibration aerosol, suggesting that aerosol composition exhibits a minor (if any) impact on CCN activation kinetics.


1999 ◽  
Vol 580 ◽  
Author(s):  
G.D. Hibbard ◽  
U. Erb ◽  
K.T. Aust ◽  
G. Palumbo

AbstractIn this study, the effect of grain size distribution on the thermal stability of electrodeposited nanocrystalline nickel was investigated by pre-annealing material such that a limited amount of abnormal grain growth was introduced. This work was done in an effort to understand the previously reported, unexpected effect, of increasing thermal stability with decreasing grain size seen in some nanocrystalline systems. Pre-annealing produced a range of grain size distributions in materials with relatively unchanged crystallographic texture and total solute content. Subsequent thermal analysis of the pre-annealed samples by differential scanning calorimetry showed that the activation energy of further grain growth was unchanged from the as-deposited nanocrystalline nickel.


2014 ◽  
Vol 7 (6) ◽  
pp. 2557-2579 ◽  
Author(s):  
S. Archer-Nicholls ◽  
D. Lowe ◽  
S. Utembe ◽  
J. Allan ◽  
R. A. Zaveri ◽  
...  

Abstract. We have made a number of developments to the Weather, Research and Forecasting model coupled with Chemistry (WRF-Chem), with the aim of improving model prediction of trace atmospheric gas-phase chemical and aerosol composition, and of interactions between air quality and weather. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been added, using the Kinetic Pre-Processor (KPP) interface, to enable more explicit simulation of VOC degradation. N2O5 heterogeneous chemistry has been added to the existing sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas-phase schemes. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. We have worked on the European domain, with a particular focus on making the model suitable for the study of nighttime chemistry and oxidation by the nitrate radical in the UK atmosphere. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments are illustrated, using a modified version of WRF-Chem 3.4.1, in order to demonstrate the impact that these changes have in the Northwest European domain. These developments are publicly available in WRF-Chem from version 3.5.1 onwards.


Sign in / Sign up

Export Citation Format

Share Document